Eminent Toxicologist Lecture Series
Pesticide Neurotoxicity – More or Less

Marion Ehrich, PhD, RPh, DABT, ATS

Professor, Pharmacology/Toxicology
Virginia-Maryland College of Veterinary Medicine
and
Virginia Tech Carilion School of Medicine
Blacksburg, Virginia

SOT president, 2003-04
Merit Award, 2010

(marion@vt.edu)
Scope of Toxicology

• Toxicology studies the effects of chemicals on biologic organisms.

• Many disciplines contribute to toxicology. There are many types of toxicologists and they have many different backgrounds.

• Toxicology can contribute to other biomedical disciplines.

Frumkin, Environmental Health, 2010
Examples of Classifications of Toxic Substances

• By chemical class and/or use
 • Solvents, pesticides, heavy metals, etc.

• By target organ or physiological system affected
 • Nervous system, immune system, liver, etc.

• By type of adverse effect
 • Neurotoxicity, developmental toxicity, etc.

• This presentation will deal with pesticides and the nervous system
Defining “Pesticides”

• Agents used against any unwanted living organism
 • Insecticides
 • Rodenticides
 • Herbicides
 • Fungicides

• Beneficial: economic; nutrition and health

• Concerns: toxicities, residues
Insecticides

• This is the type of pesticide most likely to cause unintentional neurotoxicity

• Major classes of available insecticides
 • **Organophosphates** and Carbamates
 • OP compounds can be chemical warfare agents.
 • Carbamates include drugs used for treatment of myasthenia gravis and Alzheimer’s Disease.
 • Neonicotinoids
 • Newer agents with recent concerns about effects on pollinating insects.
 • Pyrethrins and Pyrethroids
 • The most commonly available type of insecticide.
 • Phenylpyrazoles and others
OBJECTIVES

• To associate mechanisms of acute organophosphate (OP) toxicity with present and future prospects for treatment.

• To distinguish non-acute toxicities associated with OP exposure, including means for amelioration and prevention.

• To identify potential benefits to medical research resulting from OP compound studies.
Organophosphate and carbamate insecticides are useful but toxic

- These products may be used to protect agricultural crops from insects.
- Toxicities result from poor compliance with label directions, accessible storage or disposal, or inadvertent mix ups or spills.
Neurotoxicity More: OPs and carbamates can cause Acute Signs Due to Excess Acetylcholine (ACh)

- **Signs occur because ACh is not degraded by acetylcholinesterase**
 - Too much neurotransmitter....

- **Signs relate to sites where ACh acts**
 - Central Nervous System (CNS)
 - Neuromuscular junctions
 - Ganglia of the Autonomic Nervous System (ANS)
 - Muscarinic receptors on smooth muscle of peripheral Parasympathetic Nervous System

Katzung, Basic & Clinical Pharmacol, 12th ed
• Signs of excess ACh include agonistic effects on Parasympathetic Muscarinic Receptors
 • Atropine blocks these receptors
 • Early administration of oximes may reactivate acetylcholinesterase
• ACh is the neurotransmitter at neuromuscular junctions, causing overstimulation (tremors) and then block
 • Time needed for recovery
• ACh is a transmitter in the brain
 • Available esterase regenerating oximes not effective
 • High dose atropine only marginally effective

Brenner & Stevens, Pharmacology
Neurotoxicity Less: Treatments consider OP mechanisms:

- Atropine to block excess ACh
- Oximes to remove OP from newly inhibited enzyme
- Symptomatic treatment for convulsions
- Decrease exposure
- Time
Neurotoxicity More or Less:
Toxicities of Organophosphates; Treatments

• Acute excess activity in nervous system
 • Accepted treatments: atropine, oximes (2-PAM), diazepam
 • Additional possibilities under investigation.....
 • Exposure prophylactic treatment,
 • but only for threat of OP nerve agent exposures
 • Better anticonvulsants, oximes
 • Administration of esterase enzymes
 • Use of scavengers

• Neuromuscular
 • Muscles no longer contract
 • Time as treatment

• Other effects appearing later.....

Nerve agents
Chemical warfare agents
Cholinesterase inhibitors
Very potent
Volatile

Muscle contraction
Later effects?

Roanoke Times, Mar 20, 1995
Investigations into Decreasing Acute OP Toxicity

Risk = Hazard + Exposure
- OPs are hazardous substances
- **Use of protectants and/or scavengers to decrease exposure**
 - *One Example of many possibilities:*
 - derivatized (solubilized) fullerenes
 - These are ‘buckyball’ nanoparticles
 - Advantages include stability and safety

NMR demonstrated a chemical shift of the phosphorus signal, indicative of the sequestering of the OP compound by the fullerene.
Scavengers can protect from OP-induced effects

in vitro:

Fullerenes Protect From Paraoxon Induced AChE Inhibition

![Graph showing AChE activity, SH-SY5Y cells, % of control.](image)

in vivo results:

Topical application of solubilized fullerenes delayed onset of clinical signs caused by paraoxon that would normally appear in mice ≈ 20 min after exposure.

![Graph showing Mobility percentages.](image)

RISK OF ADVERSE EFFECTS

• Intrinsic hazard
• Dose
• Exposure

• Risk can be reduced by using lower quantities of less hazardous substances, and/or by reducing exposure.
Neurotoxicity More: Other Effects Appearing Later

1. Cognitive / Motor / Psychological
 A. After recovery from serious acute toxicity

 B. After long-term, low dose exposure
 1. Epidemiological studies
 • No direct association with esterase inhibition or acetylcholine excess
 • Exposure assessment difficult
 • Variable symptoms
 2. Laboratory studies
 • Developmental? Biochemical?
 • Haven’t been able to reliably reproduce in lab animals clinical effects like those of people
 3. Further research needed

Roanoke Times, Mar 20, 1995
2. Organophosphate-induced *delayed neuropathy*
 - Not possible except with specific OP chemistries
 - Requires early significant and irreversible inhibition of an esterase different from the inhibition of AChE causing acute toxicity (*neuropathy target esterase, NTE*)
 - Progressive peripheral damage to nerve axons doesn’t begin until >7 days after exposure
 - Does not appear in young or in all animal species
 - No treatment
 - Rare, because testing of potential pesticides precludes marketing
 - Some OP compounds have/had industrial uses
 - Modification possible
 - Prophylaxis with reversible inhibitors of NTE
 - Neuroprotective agents decrease clinical and pathological evidence of damage
 - Exacerbated by post-exposure to inhibitors of NTE
Delayed Neuropathy: Damage to nervous system depends on enzyme inhibition, species and time

Neuropathy demonstrated by clinical signs and nerve damage; Potential for damage by NTE inhibition

Timing of effects in susceptible species

Neurotoxicity Less: Nervous System Protectants as Ameliorating agents for OP-induced delayed neuropathy: corticoids and calcium channel blockers

Corticoids are neuroprotective unless dose is too high

Calcium channel blockers ameliorate delayed neuropathy

More or Less: Reversible Neuropathy Target Esterase Inhibitors Protect or Exacerbate

• Pre-exposure to reversible NTE inhibitor decreases availability of enzyme for irreversible inhibition by OP.

• Post-exposure to the same inhibitor worsens neuropathy.

Neurotoxicity Less: Why Marketed Pesticides (OP Insecticides) do not cause delayed neuropathy: Comparison of target esterase inhibitions (AChE for acute effects; NTE for delayed effects)

Esterases differed in sensitivity to OPs.
- Occurred with human and with rodent cells
- AChE much more sensitive than NTE if non-neuropathic

In vitro assays demonstrated 11/11 tested OPs had predictive NTE/AChE inhibitory ratios

RISK OF ADVERSE EFFECTS

• Intrinsic hazard; Dose; Exposure

• Risk can be reduced by using lower quantities of less hazardous substances, and/or by reducing exposure.
 • For OP compounds, Risk is lowered by
 (1) decreasing availability of the most hazard substances
 (2) decreasing exposures with protectants/scavengers
 (3) Prompt general measures to reduce symptoms
 (4) Improved mechanistic interventions
OBJECTIVES

• To associate mechanisms of acute organophosphate (OP) toxicity with present and future prospects for treatment.

• To distinguish non-acute toxicities associated with OP exposure, including means for amelioration and prevention.

• To identify potential benefits to medical research resulting from OP compound studies.
OPs and potential benefits to medical research

1. Identification of mechanisms associated with neurodegenerative disorders

• Background: OP compounds can be hydrolyzed by esterases that they do not inhibit
 • A-esterases; paraoxonases
 • Paraoxonases have different subtypes; PON2 of interest
 • Work with OP compounds led to the discovery and hypothesis that PON2 is potentially neuroprotective
PON2, an antioxidant enzyme found in female brain > male brain tissue, declines with age

Medical Research: Future prospects for PON2

• Brain antioxidant with sex difference
• Had additive protective effect with estradiol
• Role for PON2 in degenerative diseases?
• Possible reason why males often more susceptible than females to neural aging?

Medical Research (cont.)

2. OP compounds for study of Blood-Brain Barrier (BBB)

- BBB protects brain, but also decreases drug delivery to brain
- Disruption without destruction would be beneficial
- Need to know more about BBB function to investigate

Balbuena et al., Toxicol Sci 114, 260-271, 2010
BBB studies (cont.): OP compounds disrupt BBB

In vitro disturbance of BBB is concentration-related

In vivo effects time-related; reversible

Balbuena et al., *Toxicol Sci* 114, 260-271, 2010
Learning more about the BBB: OP effect on BBB may be related to effect on transient receptor potential canonical (TRPC) channel subunits

Effect on TRPC intense but short

Balbuena et al., Int J Toxicol 31, 238249, 2011

Li & Ehrich, J Appl Toxicol 33, 1187-1191, 2013
Medical Research: Future prospects for BBB studies

- Mechanisms of disease
 - In vitro / in vivo
- Repair
- Drug delivery
 - Treatment effectiveness

Session OBJECTIVES

- To associate mechanisms of acute organophosphate (OP) toxicity with present and future prospects for treatment.
- To distinguish non-acute toxicities associated with OP exposure, including means for amelioration and prevention.
- To identify potential benefits to medical research resulting from OP compound studies.
Pesticide Neurotoxicity – More or Less

Marion Ehrich, Ph.D., R.Ph., DABT, ATS

Professor, Pharmacology/Toxicology
Virginia-Maryland College of Veterinary Medicine
and
Virginia Tech Carilion School of Medicine
Blacksburg, VA

(marion@vt.edu)