Screening for Developmental Neurotoxicity: An In Vitro Approach using High Content Analysis

William R. Mundy, Ph.D.
U.S. EPA
National Health and Environmental Effects Research Laboratory

May 8, 2009
Allegheny-Erie Regional SOT
Testing Needs

- EPA is charged with protecting public health and the environment
- Public concerns/perceptions about neurodevelopmental disorders (e.g., ADHD, autism) has increased pressure to test environmental chemicals
- Large chemical inventories (1000’s) with little or no toxicity data
 - e.g., pesticide inerts, HPVs, CCLs, REACH

Challenge: Provide data that characterizes hazard for use in risk decisions

No data does not equal no risk
Regulatory Tools for DNT

Testing Guidelines
• EPA 870.6300 DNT Guideline
• OECD 426 DNT Guideline

• Basic Requirements – *in vivo – rat is primary species*
• Developmental exposure followed by assessments of:
 • Growth and developmental landmarks
 • Motor and sensory behaviors
 • Cognitive function
 • Neurohistopathology and morphometrics

 $0.7 – 1.0$ million per chemical
 1.5 years per study
Use of Current Regulatory Tools

Since 1991 we have tested only ~104 chemicals

<table>
<thead>
<tr>
<th>Chemical class</th>
<th>Number of studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Chemicals</td>
<td>8</td>
</tr>
<tr>
<td>Miscellaneous Agents*</td>
<td>4</td>
</tr>
<tr>
<td>Pharmaceuticals</td>
<td>3</td>
</tr>
<tr>
<td>Pesticides</td>
<td>73</td>
</tr>
<tr>
<td>Positive Control Chemicals</td>
<td>15</td>
</tr>
<tr>
<td>Solvents</td>
<td>7</td>
</tr>
</tbody>
</table>

* Food additives, cigarette smoke, dietary restriction, and maternal separation

Makris et al. EHP (2008)
Current Testing Approach versus Reality

- Assume that the list of untested compounds is 10,000
- Assume that a DNT take 6 months
- Assume that a DNT costs $750,000
- Assume that there are 10 contract/industry labs that can do a GLP DNT

- Total cost = $7,500,000,000
- Total time = 500 years
Current Testing Approach versus Reality

• We cannot test our way out of this problem using current methods!

We need new approaches that are faster and more cost-efficient
Alternative Methods for DNT (screening for prioritization)

Goal
• Develop a battery of *in vitro* tests that predict DNT

Result
• Use as 1st tier screen that is fast and efficient (*hazard identification*)

• Provide data for prioritization of chemicals for further testing (targeted based on MOA?)
Research Approach

- Battery of *in vitro* tests based on key events of brain development
 - proliferation, differentiation, migration, neurite growth, synaptogenesis, myelination
- Endpoints amenable to high throughput testing
 - cell-based endpoints, biomarkers, molecular signaling
- Show predictive ability based on “test set” including known developmental neurotoxicants
Development of a test battery based on assays for key events

1. Evaluate neural cell cultures as model of key event in neurodevelopment

2. Develop *in vitro* method using endpoint that is amenable to high throughput testing

3. Evaluate ability of assay to detect key event using a “training set” (chemicals with known effect *in vitro*)

4. Determine ability of test battery to correctly detect developmental neurotoxicants using a “test set”
Development of a test battery based on assays for key events

1. Evaluate neural cell cultures as model of key event in neurodevelopment

2. Develop *in vitro* method using endpoint that is amenable to high throughput testing

3. Evaluate ability of assay to detect key event using a “training set” (chemicals with known effect *in vitro*)

4. Determine ability of test battery to correctly detect developmental neurotoxicants using a “test set”
Models of key events in neurodevelopment

- Does key event occur reliably in the cell culture model?
- Is cell type widely available?
- Are special culture conditions needed (e.g., expensive media, prolonged culture time)?

Proliferation
- cell lines
- neural stem cells

Differentiation
- cell lines
- neural stem cells

Neurite growth
- differentiated cell lines
- differentiated stem cells
- rodent primary neurons

Cell Lines

- **SH-SY5Y**
- **ReNcell Cx**
- **PC12**
Development of a test battery based on assays for key events

1. Evaluate neural cell cultures as model of key event in neurodevelopment

2. Develop *in vitro* method using endpoint that is amenable to high throughput testing

3. Evaluate ability of assay to detect key event using a “training set” (chemicals with known effect *in vitro*)

4. Determine ability of test battery to correctly detect developmental neurotoxicants using a “test set”
In vitro high throughput screening assays

• Is the endpoint measured specific for the key event?

• Is the endpoint quantitative?

• Can you assess multiple endpoints at the same time? (e.g. key event and viability)
Cell-based Assays using High Content Screening

Provides data at the level of the individual cell

High throughput due to automated data acquisition and analysis in multi-well plates

High content based on amount of data in a single image

• Microscope and digital camera *in a box*
• Automated stage movement, exposure, and focusing capabilities
• Computer algorithms analyze the images to provide cell-based data (*e.g.* size, shape, location, fluorescence intensity)
Neurite Outgrowth – process by which a relatively undifferentiated/immature cell elaborates specialized processes (neurites) to achieve a mature neuronal phenotype
Neurite Outgrowth – high content assessment

Automated image acquisition and analysis of PC12 cells using Cellomics ArrayScan

- culture cells in 96-well plate
- at desired time fix cells
- immunostain for markers of nucleus, cell body, neurites

channel 1
nuclei (DAPI)

channel 2
cell body and neurites (tubulin)

image analysis software
Neurite Outgrowth – high content assessment

Data report from automated image analysis of NGF-induced neurite outgrowth in PC12 cells using Cellomics ArrayScan

- n = 250 cells from one well (x 8 endpoints = 2000 data points = high content)
- image acquisition and analysis time = 15 sec per well
Control studies in PC12 cells

NGF stimulates neurite growth (96 hours)

Neurite growth increases over time (100 ng/ml NGF)

Pharmacologic inhibition (internal control)

Cells were treated with NGF and Bis-1 (a PKC inhibitor) at time 0 and neurite length assessed at 96 hours
Development of a test battery based on assays for key events

1. Evaluate neural cell cultures as model of key event in neurodevelopment

2. Develop *in vitro* method using endpoint that is amenable to high throughput testing

3. Evaluate ability of assay to detect key event using a “training set” (chemicals with known effect *in vitro*)

4. Determine ability of test battery to correctly detect developmental neurotoxicants using a “test set”
Evaluation for chemical screening

- Develop a training set (positive and negative controls) for the key event.
- Determine concentration range for testing.
- Evaluate selectivity for endpoint (compared to measures of cell viability).
- Is assay capable of high(er) throughput (100’s – 1000’s of chemicals per week)?
Training Set for Neurite Outgrowth

Positive

<table>
<thead>
<tr>
<th>Chemical</th>
<th>DNT in vivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>K252a</td>
<td>nd</td>
</tr>
<tr>
<td>U0126</td>
<td>nd</td>
</tr>
<tr>
<td>Okadaic Acid</td>
<td>nd</td>
</tr>
<tr>
<td>Vincristine</td>
<td>+</td>
</tr>
<tr>
<td>Lead Acetate</td>
<td>+</td>
</tr>
<tr>
<td>Valproic Acid</td>
<td>+</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>+</td>
</tr>
<tr>
<td>Methylmercury</td>
<td>+</td>
</tr>
<tr>
<td>trans-Retinoic Acid</td>
<td>+</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>+</td>
</tr>
</tbody>
</table>

nd = no data

Negative

<table>
<thead>
<tr>
<th>Chemical</th>
<th>in vitro/in vivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethyl phthalate</td>
<td>-</td>
</tr>
<tr>
<td>d-Sorbitol</td>
<td>-</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>-</td>
</tr>
<tr>
<td>Omeprazole</td>
<td>-</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>-</td>
</tr>
<tr>
<td>Diphenhydramine</td>
<td>-</td>
</tr>
<tr>
<td>Saccharin</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>-</td>
</tr>
</tbody>
</table>

nd = no data
Patterns of Effects - Neurite Outgrowth and Cytotoxicity (96hr exposure)

1) No effect

2) Outgrowth inhibition at cytotoxic concentrations

3) Outgrowth inhibition at concentrations that are not cytotoxic

Diphenhydramine

Dexamethasone

trans-Retinoic Acid

Graphs show the effects of different compounds on neurite outgrowth and cytotoxicity.

- Diphenhydramine: No significant effect on neurite outgrowth.
- Dexamethasone: Outgrowth inhibition at cytotoxic concentrations.
- trans-Retinoic Acid: Outgrowth inhibition at concentrations that are not cytotoxic.

Graph details:
- X-axis: Concentration in Molar (M)
- Y-axis: % Control
- Green line: Total Neurite Length
- Red line: Cell Titer Glo Viability

RESEARCH & DEVELOPMENT
Building a scientific foundation for sound environmental decisions
4) Outgrowth facilitation at concentrations that are not cytotoxic

Omeprazole

- Neurite Outgrowth and Cytotoxicity (96hr exposure)

Patterns of Effects - Neurite Outgrowth and Cytotoxicity (96hr exposure)

- Neurite Outgrowth and Cytotoxicity (96hr exposure)
Training Set Results

Positive

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Neurite Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>K252a</td>
<td>+</td>
</tr>
<tr>
<td>U0126</td>
<td>+</td>
</tr>
<tr>
<td>Okadaic Acid</td>
<td>+</td>
</tr>
<tr>
<td>Vincristine</td>
<td>+</td>
</tr>
<tr>
<td>Lead Acetate</td>
<td>-</td>
</tr>
<tr>
<td>Valproic Acid</td>
<td>-</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>+</td>
</tr>
<tr>
<td>Methylmercury</td>
<td>+</td>
</tr>
<tr>
<td>trans-Retinoic Acid</td>
<td>+</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>+</td>
</tr>
</tbody>
</table>

8/10

Negative

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Neurite Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethyl phthalate</td>
<td>+*</td>
</tr>
<tr>
<td>d-Sorbitol</td>
<td>-</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>-</td>
</tr>
<tr>
<td>Omeprazole</td>
<td>+*</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>-</td>
</tr>
<tr>
<td>Diphenhydramine</td>
<td>-</td>
</tr>
<tr>
<td>Saccharin</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>+*</td>
</tr>
</tbody>
</table>

3/8

* Increase at highest concentration tested
High content screening for Proliferation

Doubling time ≈ 35 hr

Doubling time ≈ 40 hr
High content screening for Proliferation

Detection of cells in S phase
- grow cells in 96-well plate
- treat with chemical for 20 hr
- add BrdU for 4 hr (incorporation into replicating DNA)
- fix in presence of DAPI dye and perform ICC for BrdU
- detect and quantify BrdU+ cells using ArrayScan

Channel 1
DAPI Dye
(detect all nuclei)

Channel 2
BrdU
(staining in mask)

Channel 2
DAPI Dye
(create mask around nuclei)
Control studies in PC12 cells
- inhibit proliferation with aphidicolin
- induce differentiation with NGF

Control studies in SH-SY5Y cells
- inhibit proliferation with aphidicolin
- induce differentiation with *trans*-retinoic acid

BrdU positive cells (% total)
Training set chemicals for Proliferation

Positive *(in vitro)*
- 5-FU
- Cytosine Arabinoside
- Aphidicolin
- Ochratoxin A
- Dexamethasone*
- t-Retinoic acid*
- Cadmium*
- Methylmercury*

Negative
- Amoxicillin
- Sorbitol
- Saccharin
- Acetaminophen
- Dimethyl phthalate
- Diphenhydramine
- Omeprazole
- Glyphosate

* *developmental neurotoxicant*
Example Responses - Positives

PC12

Cytosine Arabinoside

% Control ± S.E.

log Chemical (M)

BrdU Positive

Viability

SH-SY5Y

Cadmium

% Control ± S.E.

log Chemical (M)
Summary - Positives

<table>
<thead>
<tr>
<th>Chemical</th>
<th>PC12</th>
<th>SH-SY5Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-FU</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cytosine Arabinoside</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Aphidicolin</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ochratoxin A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>t-Retinoic acid</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Cadmium</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Methylmercury</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>7/8</td>
<td>5/8</td>
</tr>
</tbody>
</table>

+ selective effect on proliferation
- effect on proliferation and viability
- no effect
DNT In Vitro Status

In Vitro Models *(blue = human cells)*

<table>
<thead>
<tr>
<th>Key Event</th>
<th>PC12 (NS-1)</th>
<th>N1E-115</th>
<th>SH-SY5Y</th>
<th>1° Cortex</th>
<th>1° CGC</th>
<th>ReNcell VM</th>
<th>ReNcell Cx</th>
<th>EnStem A</th>
<th>ArunA hN2</th>
<th>Glial</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proliferation</td>
<td>V</td>
<td>D</td>
<td>V</td>
<td>D</td>
<td>S</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differentiation</td>
<td>V</td>
<td>D</td>
<td></td>
<td></td>
<td>D</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurite Growth</td>
<td>S</td>
<td></td>
<td>V</td>
<td>V</td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synaptogenesis</td>
<td></td>
<td>D</td>
<td>D</td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migration</td>
<td></td>
</tr>
<tr>
<td>Apoptosis</td>
<td></td>
</tr>
<tr>
<td>Myelination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

D = methods development (high throughput)
V = validation (10-20 chems)
S = Screening (NCCT_320)
Alternative Methods - *In Vitro*

Major Research Efforts

<table>
<thead>
<tr>
<th>Lab</th>
<th>Research Projects</th>
<th>Model systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA - US</td>
<td>Neurite outgrowth</td>
<td>Rodent cell lines</td>
</tr>
<tr>
<td></td>
<td>Proliferation</td>
<td>Human progenitor cells</td>
</tr>
<tr>
<td></td>
<td>Differentiation</td>
<td>Primary rodent cells</td>
</tr>
<tr>
<td>ECVAM - Italy</td>
<td>Cell line development</td>
<td>Human stem cells</td>
</tr>
<tr>
<td></td>
<td>Evoked potentials</td>
<td>Mixed re-aggregated cultures</td>
</tr>
<tr>
<td></td>
<td>Membrane potential</td>
<td>Rodent cell lines</td>
</tr>
<tr>
<td></td>
<td>ROS production</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cytoskeletal markers</td>
<td></td>
</tr>
<tr>
<td>ZEBET - Germany</td>
<td>Proliferation</td>
<td>Mixed re-aggregated cultures</td>
</tr>
<tr>
<td></td>
<td>Migration</td>
<td>Stem cells</td>
</tr>
<tr>
<td></td>
<td>Differentiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>apoptosis</td>
<td></td>
</tr>
<tr>
<td>TNO Netherlands</td>
<td>Proliferation</td>
<td>Stem cells</td>
</tr>
<tr>
<td></td>
<td>Migration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differentiation</td>
<td></td>
</tr>
<tr>
<td>Heinrich-Heine Universität Germany</td>
<td>Differentiation</td>
<td>Human neural progenitor cells</td>
</tr>
<tr>
<td></td>
<td>apoptosis</td>
<td>Human aggregated cultures</td>
</tr>
<tr>
<td></td>
<td>Migration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAP Kinase signaling</td>
<td></td>
</tr>
</tbody>
</table>
How Do Go From Where We Are Now to Where We Need to Be

There need to be transitional stages

- Use existing methods/technology to
 - Evaluate methods
 - Generate data
- Initially build tiered testing frameworks
 - Screening for prioritization
- Shift to predictive ‘pathways’ as they become available
Transitioning To A New Paradigm

Current Practice

- Expensive, low throughput In Vivo Based Testing
 - Limited In Vivo Triggered Follow-up Studies
 - Specialized Mechanistic Studies
 - “Supporting” In Vitro Studies
Transitioning To A New Paradigm

“Near Future” – Screening for Prioritization

HTP Screening Batteries

Second Tier (alt species?)

Limited Mammalian Testing

Specialized Testing
Acknowledgements

EPA Neurotoxicology Division
Theresa Freudenrich
Brian Robinette
Josh Harrill
Nick Radio (now at Cellumen)
Kevin Crofton
Stephanie Padilla
Tim Shafer

Johns Hopkins CAAT
Alan Goldberg
Pam Lein (UC Davis)

ECVAM
Sandra Coecke
Anna Price