SCENIHR Opinion on the Determination of Potential Health Effects of Nanomaterials Used in Medical Devices

Speaker: Wim De Jong, DVM, PHD
Moderator: Kevin Trout, MDCPSS Grad Student Representative

- Webinar will begin at 11:00AM EST
- Attendee audio lines will be on mute
- Questions submitted via “Q&A” will be addressed at the end of the presentation. The “Q&A” text function of WebEx is located on the side panel.
- Webinar recording and slides will be available on the MDCPSS website
The SCENIHR Opinion Guidance on the Determination of Potential Health Effects of Nanomaterials used in Medical Devices

Wim De Jong, DVM, PHD
wim.de.jong@rivm.nl

Vice chair SCENIHR 2004 - 2013
Content of presentation

- Role and work of EU Scientific Committees
- Use of nanomaterial in medical devices
 - Expectations on future use in medical devices
 - Potential benefits of use of nanomaterials
- Potential risks of nanomaterials
- Risk assessment of products of nanotechnologies
- What make risk assessment of nanomaterials problematic?
- Risk assessment of nanomaterials in medical devices
The European Commission's non-food Scientific Committees

DG SANTE - Health Information and Scientific Committee Unit
The three independent non-food Scientific Committees ensure systematic assessment of risks, based on best practice for EU policy needs on health, consumers and environment.

Other EU risk assessment bodies are European Food Safety Authority (EFSA); the European Medicines Agency (EMA); the European Centre for Disease Prevention and Control (ECDC); and the European Chemicals Agency (ECHA)
Composition of the Scientific Committees

- Scientists from academia, research or other scientific bodies, appointed by the EC in their personal capacity, following an open call. Scientists have to provide a **declaration of commitment, a declaration of interests and a declaration of confidentiality**

- Selection criteria: competence and independence. As far as possible, geographical and gender balance

- External experts may be invited to WG when special expertise is needed
Mandates

- **SCHER**: advice on toxicity and eco-toxicity of chemical, biochemical and biological products, chemicals in toys, waste, environmental contaminants, drinking water quality, indoor and ambient air quality, endocrine disrupters

- **SCENIHR**: advice on emerging risks, newly identified risks, complex or multidisciplinary issues requiring comprehensive assessment, issues not covered by other bodies

- **SCCS**: advice on risks related to consumer products (non-food) mostly on cosmetics but also on toys, textiles, clothing, household products, non-chemical risks (mechanical, physical, biological), consumer services (for example, tattooing, tanning devices)
Communicating science

• Scientific Committees' website
Communicating science

- Dedicated **newsletter**: 2 editions per year
Scientific Committee on Emerging and Newly Identified Health Risks

SCENIHR

Preliminary Opinion

Guidance on the Determination of Potential Health Effects of Nanomaterials Used in Medical Devices

SCENIHR adopted this preliminary opinion by written procedure on 17 July 2014
ACKNOWLEDGMENTS

The members of the working group are acknowledged for their valuable contribution to this Opinion. They are:

SCENIHR members:
Prof. Dr Igor Emri, Centre for Experimental Mechanics, Faculty of Mechanical Engineering, University of Ljubljana, Slovenia.
Prof. Philippe Hartemann, Professor of Public Health, Département Environnement et Santé Publique, Faculté de Médecine de Nancy, University of Lorraine, Nancy, France.
Prof. Dr Ana Proykova, University of Sofia, Sofia, Bulgaria (chair of the Working Group since April 2013).
Prof. Dr Konrad Rydzynski, Nofer Insitute of Occupational Medicine, Lodz, Poland.

External experts:
Prof. Dr Jim Bridges, Research for Sustainability, Guildford, United Kingdom.
Prof. Dr Lars Bjursten, Lund University, Lund, Sweden.
Dr Wim De Jong, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands (chair of the Working Group until March 2013 and rapporteur).
Dr Robert Geertsma, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
Prof. Arne Hensten. UIT The Arctic University of Norway. Tromso. Norway.
Prof. Dr Nils Gjerdet, University of Bergen, Bergen, Norway.

Disclaimer: this presentation/webinar does not necessarily represent the views of the European Commission and/or RIVM
Nanotechnologies in Medical Devices

- Wide range, very diverse products and technologies
- Therapy, diagnosis, monitoring, prevention of disease
- Non-invasive or invasive – any kind of tissue contact
- Using nanomaterials or other types of nanotechnologies
- All medical disciplines potentially benefit

- No overview available of nanomedical devices in literature

- Request from Dutch Ministry of Health: Provide overview
 - Availability, Benefits, Risks

- Methods: Literature, Databases
 - FDA, Health Canada, Clinical Trials, Patents
 - Categorised by medical specialism
• Nanotechnology in medical devices is a growing area
 – Increasing number of patents, clinical trials, products on market

• Dentistry by far largest number of products

• Nanocoatings/surface modification one of the most important types of nanotech applied
 – Cardiology, dentistry, neurology, orthopaedics
 – Benefits: increased biocompatibility, thus better integration in tissue
 – Other benefits: coatings with antimicrobial properties
● **Nanomaterials increasingly used to mimic naturally occurring structures**
 - Dentistry, orthopaedics
 - Optimal biological, physical, mechanical aesthetic characteristics compared with human tissues

● **Electrical & magnetic properties of nanomaterials exploited**
 - Cardiology, neurology
 - Improved bioelectrical interface, increased battery lifetime

● **In oncology: “free” NM used for therapy & for surgical guiding**
• **Nanotechnology is expected to have great impact on many areas in medicine, especially:**
 - Surgery
 - Cardiology
 - Oncology
 - Neurology
 - Orthopaedics
 - Dentistry
 - Infectious diseases
 - Implant technology
 - Drug delivery
 - Tissue Engineering

• **Nanotechnology is foreseen to change health care in a fundamental way:**
 - Novel methods for disease diagnosis and therapy
 - New and effective tools for disease prevention
 - Point-of-care, fast testing → daily screening of health
 - Therapeutic selection tailored to the patient’s profile (Personalised treatment)
• FIDE (European Dental Industry) estimate 3500 dental products containing nanomaterials on EU market.

• The main product groups reported are:
 – Impression materials (600)
 – Dental composites (340)
 – Denture base resins (320)
 – Veneering materials (230)
 – Accessories for verification of occlusion (200)
 – Bonding agents (200)
 – Final luting cements (180)
 – Plastic materials for bite registration (140)
 – Materials for crowns and bridges (140)
 – Cements (130)
 – Materials for temporary crowns and bridges (120)
 – Artificial teeth (110)
Orthopaedics

CE-marked (examples)

● **Bone replacement** materials (bone graft materials)
 - Hydroxyapatite (HA) and tricalcium phosphate (TCP) NPs
 > Ostim®, Heraeus Kulzer, DE
 > NanOss® Bioactive, Pioneer Surgical Technology Inc, USA
 > VITOSS®, Orthovita Inc, USA

● **Implant surface coatings**
 - Nano-structured HA for hip, knee prostheses;
 > IONTITE, Spire Biomedical Inc, USA
 > BoneMaster, BioMet, USA
 > NANANO, Promimic, SE
 - Titanium dioxide nanocoating
 > TiMesh, GfE Medixintechnik GmbH, DE

● **Cartilage scaffold** – knee repair
 - MaioRegen, Finceramica, IT

● **Tantalum metal implant material**
 - Trabecular Metal, Zimmer Inc, USA
Textiles / wound care products

● Textiles
 – **Antimicrobial** Nanocrystalline silver particle-incorporated yarns
 > Nano-silver particle for textile, AgPURE, RAS Materials, DE
 > Nano-Magic Silver®, Hyosung Mipan, South Korea

● Wound care products
 – Nanocrystalline silver particle-based wound dressing – *on the market*
 Acticoat* SYLCRYST™, Smith & Nephew plc, UK
 – Wound dressings made from nanofibres, often by electrospinning
 > Nanogen Aktiv, Genadyme Biotechnologies Inc, USA
 > Chitoflex, HemCon Medical Technologies, USA
 – Skin substitute from nanofiber cellulose
 > Nanoderm, Axcelon Dermacare Inc, USA
EU Patent applications nanomedical devices (Total 150)
EU Patent applications nanomedical devices (Total 150)
Clinical trials with nanomedical devices (Total 115)

- Dentistry: 34
- Oncology: 24
- IVDs: 20
- Wound Care: 13
- Cardiology: 6
- Orthopaedics: 5
Nanomedicine: new opportunities – also new risks?

Nanomaterials (nanoparticles) can have sizes similar to structures at subcellular level and (theoretically) can reach and interact with such structures.
Main question/concern for safety

Increase in surface area >> increase in surface activity, but also increase in possible contact with cells and tissues

Does this also result in increased toxicity?

In view of the multitude of nanomaterials expected to be developed, the question arises whether we do need to test all new (modified) nanomaterials for safety aspects or is extrapolation between nanomaterials possible?
SCENIHR 2009 Opinion

Risk Assessment of Products of Nanotechnologies

The hypothesis that smaller means more reactive and thus more toxic cannot be substantiated by the published data. In this respect nanomaterials are similar to normal substances in that some may be toxic and some may not’’

Although this may be considered comfortable that in principle there is no difference between “normal chemicals” and nanomaterials, it also has the implication that nanomaterials should be investigated on a case-by-case basis as the risks cannot be estimated beforehand.

Classical approach of risk assessment is applicable

*Exposure assessment/Hazard identification/
Hazard characterisation/Risk characterisation*
Guidance on determination of potential health effects of nanomaterials used in medical devices

- **Included**
 - Characterisation of NM used in medical devices
 - Use of NM in medical devices
 - Exposure to nanomaterials from medical devices
 > Also generation of NM by wear and tear processes included
 - Toxicological evaluation
 - Safety evaluation of NM used in medical devices (ISO 10993-series)
 - Risk assessment

- **Excluded**
 - broader application of nanotechnology in medical devices like nano-electronics, lab-on-a-chip technologies
 - *In vitro* diagnostic medical devices in view of unlikely exposure
 - Contrast agents for imaging (in EU medicinal products)
 - Occupational and environmental risks during manufacturing/disposal
Risk assessment of nanomaterials

- What is a nanomaterial?
- Exposure assessment
- Internal dose
- Hazard characterisation
- Hazard identification
- Dose response assessment
- Risk characterisation
Why is safety evaluation and risk assessment of nanomaterials difficult?

- Knowledge gaps in risk assessment
 - Nanoparticle characterisation, detection, and measurement
 - Dose responses of possible effects (including, what is the dose?)
 - Fate and persistence of NP in humans and environment
 - Aspects of (eco)toxicology (interaction at sub-cellular and molecular levels)

In view of uncertainties extrapolation from conventional form of “large” particles considered not possible.
Why is safety evaluation and risk assessment of nanomaterials difficult?

- Diversity of nanomaterials (inorganic, organic, composite, coated,...)
- Solubility, agglomeration/aggregation (stability, size distribution)
- Matrix (interactions, effects on size, digestion)
- Quality of available nanomaterials (polydispersity, purity, concentration)
- Test protocols (dispersion, reproducibility, comparability)
- Choice & preparation of test medium (concentration, solvents)

Many factors with varying effects!
Knowledge gaps!
Complexity of nanomaterials

- More variation in physicochemical parameters possible that can affect exposure, kinetics and hazard of a material than for ‘normal chemicals’
- Physicochemical parameters that may affect exposure, kinetics and/or hazard
 - Size
 - Aggregation/agglomeration
 - Shape
 - Coating/surface functionalisation/surface chemistry
 - Surface charge
 - Dissolution rate
 - Composition
 - Reactivity
 - Photoreactivity
 - …
What we already know/use (nanodefinition)

- SCENIHR Opinion on “Scientific basis for the definition of the term ‘nanomaterial’” (2010)
 - Most physicochemical characteristics not useful for definition
 - Only size is appropriate characteristic to be used in definition
- EU Recommendation for a definition of nanomaterials (2011)
 - Sets NM apart as group particulates (1 – 100 nm), >50%
- ISO/TS 80004-1:2015
 - Nanoscale 1 – 100 nm
- Auffan et al., 2009
 - Size not sufficient for definition
 - Novel size dependent properties
 - Inorganic nanoparticles (metal and metal oxide NP)
 - Properties affected/changing when size below 20 – 30 nm
What do we want to know for Risk Assessment?

We really want to know is which physicochemical characteristics drive potential adverse (toxic) effects.

Physicochemical characterisation is essential. See Table 1 in SCENIHR Opinion 2015 for various parameters and methods for characterisation.

Biological behaviour/toxicokinetics
How is a nanoparticle/nanomaterial defined? What do we mean by size?

<table>
<thead>
<tr>
<th>Particle type</th>
<th>Nominal</th>
<th>TEM*</th>
<th>AFM*</th>
<th>FCS^</th>
<th>NTA*</th>
<th>DLS^</th>
<th>FIFFF^</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂ & FA</td>
<td>5</td>
<td>16.1</td>
<td>3.7</td>
<td>6.5</td>
<td>164</td>
<td>1230</td>
<td>3.7</td>
</tr>
<tr>
<td>1mg/L</td>
<td></td>
<td>+/-6.4</td>
<td>+/-2.1</td>
<td>+/-2.8</td>
<td>+/-32 (30mg/L)</td>
<td>+/-430 (30mg/L)</td>
<td>(100mg/L)</td>
</tr>
<tr>
<td>ZnO & FA</td>
<td>20</td>
<td>12.2</td>
<td>25.7</td>
<td>28.5</td>
<td>130</td>
<td>870</td>
<td>228.3</td>
</tr>
<tr>
<td>1mg/L</td>
<td></td>
<td>+/-4.5</td>
<td>+/-8.5</td>
<td>+/-10.5</td>
<td>+/-50 (100mg/L)</td>
<td>+/-680 (30mg/L)</td>
<td>(100mg/L)</td>
</tr>
<tr>
<td>QDs</td>
<td>6-10</td>
<td>6.5</td>
<td>5.9</td>
<td>81.8</td>
<td>213</td>
<td>234</td>
<td>41.5</td>
</tr>
<tr>
<td>1.92 ug/L</td>
<td></td>
<td>+/-1.9</td>
<td>+/-3.4</td>
<td>+/-4.9</td>
<td>+/-17</td>
<td>+/-35</td>
<td></td>
</tr>
</tbody>
</table>

*number average ^weight average \~z average

Understanding and correlation of size measurement techniques is essential

TEM, transmission electron microscopy; AFM, atomic force microscopy; DLS, dynamic light scattering; FCS, fluorescence correlation spectroscopy; NTA, nanoparticle tracking analysis; FIFFF, flow field flow fractionation

Courtesy of Karin Tiede, FERA, York, UK
Transmission Electron Micrographs of silica NPs

11 nm

34 nm

80 nm

34 nm

400 nm

248 nm

Park et al., Toxicol Appl Pharmacol, 2009
Pharmacological availability
Effect of nanoparticle size on tissue distribution

Gold distribution at 24 h after iv injection in rats as percentage of injected dose (100 µg per animal)

<table>
<thead>
<tr>
<th>Particle size</th>
<th>10 nm</th>
<th>50 nm</th>
<th>100 nm</th>
<th>250 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number concentration</td>
<td>5.7x10^{12}</td>
<td>4.5x10^{10}</td>
<td>5.6x10^{9}</td>
<td>3.6x10^{8}</td>
</tr>
<tr>
<td>Surface area</td>
<td>1.6x10^{15}</td>
<td>3.2x10^{14}</td>
<td>1.7x10^{14}</td>
<td>6.9x10^{13}</td>
</tr>
<tr>
<td>Mass injected</td>
<td>85 µg</td>
<td>106 µg</td>
<td>98 µg</td>
<td>120 µg</td>
</tr>
</tbody>
</table>

De Jong et al., Biomaterials, 2008
Pharmacological availability
Effects of size on toxicokinetics

Table 6
The average number of gold particles distributed to the various organs (estimated)

<table>
<thead>
<tr>
<th>Tissue</th>
<th>10 nm, Number of particles (number/g organ)</th>
<th>50 nm, Number of particles (number/g organ)</th>
<th>100 nm, Number of particles (number/g organ)</th>
<th>250 nm, Number of particles (number/g organ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>1.9E + 12</td>
<td>1.2E + 10</td>
<td>2.2E + 09</td>
<td>4.6E + 07</td>
</tr>
<tr>
<td>Liver</td>
<td>2.4E + 12</td>
<td>8.2E + 09</td>
<td>2.3E + 09</td>
<td>9.5E + 07</td>
</tr>
<tr>
<td>Spleen</td>
<td>1.1E + 11</td>
<td>5.2E + 08</td>
<td>7.3E + 07</td>
<td>3.8E + 06</td>
</tr>
<tr>
<td>Lungs</td>
<td>1.4E + 10</td>
<td>9.0E + 08</td>
<td>2.2E + 06</td>
<td>1.2E + 05</td>
</tr>
<tr>
<td>Kidneys</td>
<td>4.9E + 10</td>
<td>6.5E + 07</td>
<td>3.8E + 06</td>
<td>1.6E + 05</td>
</tr>
<tr>
<td>Testis</td>
<td>1.1E + 10</td>
<td>—</td>
<td>—</td>
<td>4.2E + 04</td>
</tr>
<tr>
<td>Thymus</td>
<td>9.1E + 09</td>
<td>—</td>
<td>—</td>
<td>6.4E + 04</td>
</tr>
<tr>
<td>Heart</td>
<td>9.9E + 09</td>
<td>2.2E + 07</td>
<td>4.3E + 05</td>
<td>—</td>
</tr>
<tr>
<td>Brain</td>
<td>1.6E + 10</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

N = 7 N = 2 N = 4 N = 5

Although only a few % of the administered dose a considerable amount may be present in organs in terms of particle numbers. What about local accumulation and chronic effects?
Conclusions of Au (and Ag) distribution studies

- Most nanoparticles end in liver and spleen
- Smaller nanoparticles can have more widespread organ distribution
- Liver and spleen are part of RES (reticulo endothelial system), organs with phagocytosing cells along blood vessels
- How to avoid trapping of nanoparticles/nanomedicines by RES?
Effects of surface (PEG coating) of gold nanorods on toxicokinetics

Blood clearance of PEGylated and non PEGylated Au nanorods

- Control
- PEG-AuNR
- CTAB-AuNR

Extinction coefficient (mm$^{-1}$)

Lankveld et al., Nanomedicine, 2011
Effects of coating of gold nanorods on toxicokinetics

<table>
<thead>
<tr>
<th>Tissue</th>
<th>PEG-AuNR<sub>770</sub> (ng/g)</th>
<th>CTAB-AuNR<sub>770</sub> (ng/g)</th>
<th>PEG-AuNR<sub>770</sub> (ng/g)</th>
<th>CTAB-AuNR<sub>770</sub> (ng/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>320 ± 105</td>
<td>2339 ± 390</td>
<td>978 ± 145</td>
<td>2059 ± 299</td>
</tr>
<tr>
<td>Spleen</td>
<td>3477 ± 153</td>
<td>1643 ± 236</td>
<td>6644 ± 1973</td>
<td>1132 ± 204</td>
</tr>
<tr>
<td>Kidney</td>
<td>183 ± 32</td>
<td>13 ± 1</td>
<td>176 ± 29</td>
<td>5 ± 3</td>
</tr>
<tr>
<td>Lung</td>
<td>264 ± 22</td>
<td>239 ± 102</td>
<td>106 ± 17</td>
<td>172 ± 99</td>
</tr>
<tr>
<td>Heart</td>
<td>192 ± 5</td>
<td>3 ± 1</td>
<td>104 ± 13</td>
<td>4 ± 3</td>
</tr>
<tr>
<td>Thymus</td>
<td>66 ± 19</td>
<td>2 ± 0</td>
<td>66 ± 26</td>
<td>2 ± 0</td>
</tr>
<tr>
<td>Brain</td>
<td>27 ± 3</td>
<td>5 ± 6</td>
<td>2 ± 0</td>
<td>2 ± 1</td>
</tr>
<tr>
<td>Testes</td>
<td>33 ± 10</td>
<td>2 ± 0</td>
<td>23 ± 6</td>
<td>2 ± 0</td>
</tr>
<tr>
<td>Blood</td>
<td>1007 ± 76</td>
<td>3 ± 0</td>
<td>3 ± 1</td>
<td>3 ± 0</td>
</tr>
</tbody>
</table>

Data are presented as gold concentration in ng per gram tissue. Gold nanorods were administered intravenously at day 0. Number of animals (samples) n=3 for day 1 and n=6 for day 6. Tissue samples were prepared by organ digestion before ICP-MS measurement.

For toxicity local organ dose is of importance.
For PEGylated gold nanorods now SPLEEN is target organ with highest exposure dose.
What about local accumulation and chronic effects?

Lankveld et al., Biomaterials, 2010
Safety evaluation

- Problems with testing
 - Problems with identification/characterization
 - Problems with dispersion for testing *in vitro* and/or *in vivo*
 - Protein adherence, effect of protein corona
 - We know it exists, but we do not know its biological effects
Potential assay artifacts

- Interference in assay
 - Spectrophotometer, absorbance of (fluorescence) signal used in various assays
- Chemical interactions
 - Interaction with assay substrates due to chemical properties of nanomaterials
- Depletion of cell culture medium
 - Adsorbance of tissue culture components (nutrients, growth factors) due to adsorptive properties of nanomaterials
- Inability of nanomaterials to enter prokaryotic cells (e.g. Ames test)
 - Ames test generally considered not appropriate for determination of genotoxicity of nanomaterials
Papers referring to assay interferences

- Worle-Knirsch et al., Nano Letters 6, 1261-1268, 2006
- Kroll et al., Eur J Pharmaceutics Biopharmaceutics 72, 370-377, 2009
- Oostingh et al., Particle Fiber Toxicology 8:8, 2011
- Kroll et al., Particle Fiber Toxicology 8:9, 2011
- Kroll et al., Archives of Toxicology 86, 1123-1136, 2012
- Ong et al., PloS One 9, e90650, 2014
- Kucki et al., Innate Immunity 20, 327-336, 2014
Some characteristics for toxicity already known.

- Nanoparticle charge
- Nanoparticle solubility
 - Release of toxic ions
- Composition
 - Impurities, *coatings*
- Shape
 - Carbon nanotubes, rigidity

- Biological behaviour
 - *Toxicokinetics*
 - Ability to cross biological barriers (size, coating)
Is dose metric of mass applicable?

- Dose metrics per kg body weight
 - Mass (milligram, gram)
 - Number of particles, as effects may be determined by the particle characteristics
 - Surface area, as demonstrated for inhalation toxicity of TiO$_2$

-something else?
Adverse effect..,
What to do?

Specific use: Rationale for conclusions on safety of use of nanoTiO$_2$ as UV-filter in sunscreen formulations

Adverse effects identified:
- Positive genotoxic effects reported in open literature
 - also negative effects were reported, so it is overall inconclusive
- Inhalation toxicity observed (inhalation exposure to be avoided)
- Penetration in outer layer of *stratum corneum*
 - limitation of acceptable photo-catalytic activity

However, based on provided information and open literature it was concluded that skin exposure was found to be unlikely to lead to:
- Skin penetration and thus systemic exposure
- Acute toxicity via dermal application or oral ingestion
- Skin irritation, eye irritation or skin sensitization when applied on healthy skin
- Reproductive effects when applied on healthy skin
Risk assessment of nanomaterials used in invasive medical devices: Principles

- **Basis risk assessment nanomedical devices same as for other MD**
- **Specific characteristics of NM to be taken into account, i.e.:**
 - Detailed physicochemical characterisation and **identification** of NM
 - Exposure
 - Toxicokinetic studies in case of potential release of NM
 - Pitfalls in toxicity testing – sampling, read-out, mechanism, ...
- **ISO 10993-series Biological Evaluation of Medical Devices**
 - Framework based on type of device, type of contact, contact time
 - Depending on device category, various biological/toxicological tests
 - Guidance document TR ISO 10993-22 under development
- **Nano-related risk primarily related to release of nanomaterials**

- **Also generation of NM by wear and tear processes included**
Table 3: An estimation of potential external and internal exposure as starting point for a risk evaluation for medical devices containing nanomaterials

<table>
<thead>
<tr>
<th>Type of device</th>
<th>Type of contact</th>
<th>Duration of contact</th>
<th>Type of application of nanomaterials</th>
<th>External exposure/internal exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Free (coating)</td>
<td>Fixed (coating)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weak (physisor)</td>
<td>Strong (chemisor)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Embedded In degradable materials*</td>
<td>Embedded In non-degradable materials</td>
</tr>
<tr>
<td>Surface device</td>
<td>Intact skin</td>
<td>≤ 24 h</td>
<td>H/N</td>
<td>M/N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>24 h to 30 d</td>
<td>H/N</td>
<td>M/N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>30 d</td>
<td>H/N</td>
<td>M/N</td>
</tr>
<tr>
<td></td>
<td>Intact mucosal membrane</td>
<td>≤ 24 h</td>
<td>H/L</td>
<td>M/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>24 h to 30 d</td>
<td>H/M</td>
<td>M/M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>30 d</td>
<td>H/M</td>
<td>M/M</td>
</tr>
<tr>
<td></td>
<td>Breached or compromised surface</td>
<td>≤ 24 h</td>
<td>H/H</td>
<td>M/M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 h to 30 d</td>
<td>H/H</td>
<td>M/M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 d</td>
<td>H/H</td>
<td>M/M</td>
</tr>
</tbody>
</table>

H=high, M=medium, L=low, N=negligible, na=not applicable
Table 3: An estimation of potential external and internal exposure as starting point for a risk evaluation for medical devices containing nanomaterials

<table>
<thead>
<tr>
<th>Type of device</th>
<th>Type of contact</th>
<th>Duration of contact</th>
<th>Type of application of nanomaterials</th>
<th>External exposure/internal exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Free</td>
<td>Fixed (coating)</td>
</tr>
<tr>
<td>External</td>
<td>Blood path,</td>
<td>≤ 24 h</td>
<td>na</td>
<td>M/M</td>
</tr>
<tr>
<td>Communicating</td>
<td>indirect</td>
<td>>24 h to 30 d</td>
<td>na</td>
<td>M/M</td>
</tr>
<tr>
<td>device</td>
<td></td>
<td>>30 d</td>
<td>na</td>
<td>M/M</td>
</tr>
<tr>
<td>Tissue/bone/</td>
<td>≤ 24 h</td>
<td>H/H</td>
<td>M/M</td>
<td>M/L</td>
</tr>
<tr>
<td>dentin</td>
<td>>24 h to 30 d</td>
<td>H/H</td>
<td>M/M</td>
<td>M/L</td>
</tr>
<tr>
<td></td>
<td>>30 d</td>
<td>H/H</td>
<td>M/M</td>
<td>M/L</td>
</tr>
<tr>
<td>Circulating</td>
<td>≤ 24 h</td>
<td>na</td>
<td>H/H</td>
<td>H/H</td>
</tr>
<tr>
<td>blood***</td>
<td>>24 h to 30 d</td>
<td>na</td>
<td>H/H</td>
<td>H/H</td>
</tr>
<tr>
<td></td>
<td>>30 d</td>
<td>na</td>
<td>H/H</td>
<td>H/H</td>
</tr>
</tbody>
</table>

H=high, M=medium, L=low, N=negligible, na=not applicable
Table 3: An estimation of potential external and internal exposure as starting point for a risk evaluation for medical devices containing nanomaterials

<table>
<thead>
<tr>
<th>Type of device</th>
<th>Type of contact</th>
<th>Duration of contact</th>
<th>Free</th>
<th>Fixed (coating)</th>
<th>Fixed (coating)</th>
<th>Embedded</th>
<th>Embedded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implant device</td>
<td>Tissue/bone</td>
<td>≤ 24 h</td>
<td>H/H</td>
<td>H/H</td>
<td>H/L</td>
<td>L/L</td>
<td>N/N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>24 h to 30 d</td>
<td>H/H</td>
<td>H/H</td>
<td>H/L</td>
<td>M/M</td>
<td>N/N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>30 d</td>
<td>H/H</td>
<td>H/H</td>
<td>H/L</td>
<td>H/H</td>
<td>N/N</td>
</tr>
<tr>
<td>Blood</td>
<td></td>
<td>≤ 24 h</td>
<td>H/H</td>
<td>H/H</td>
<td>H/L</td>
<td>L/L</td>
<td>N/N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>24 h to 30 d</td>
<td>H/H</td>
<td>H/H</td>
<td>H/L</td>
<td>M/M</td>
<td>N/N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>30 d</td>
<td>H/H</td>
<td>H/H</td>
<td>H/L</td>
<td>H/H</td>
<td>N/N</td>
</tr>
</tbody>
</table>

H=high, M=medium, L=low, N=negligible, na= not applicable

H/L means high potential contact and/or external exposure to the nanomaterial / low potential for internal systemic exposure of all organ systems
Device testing considerations according to ISO 10993-1:2009

- Device category
 - Surface device
 - External communicating device
 - Implant device
- Contact location
 - Skin, mucosal membrane, breached or compromised surface
 - Blood, tissue/bone/dentin
- Contact time
 - Limited ≤ 24 h
 - Prolonged > 24 h to 30 days
 - Permanent > 30 days
Tests that need to be considered depending on category, contact location and contact time

- Cytotoxicity
- Sensitization
- Irritation or intracutaneous reactivity
- Systemic toxicity (acute toxicity)
- Subchronic toxicity (subacute toxicity)
- Genotoxicity
- Implantation
- Haemocompatibility

These are assays that need to be considered for a biological safety evaluation based on a risk analysis. No testing is needed when sufficient data are already available.
Table 4: Framework for specific nanomaterial toxicity testing based on potential release (exposure) of nanomaterials from medical devices.

<table>
<thead>
<tr>
<th>Testing proposed</th>
<th>Non-invasive short term use</th>
<th>Non-invasive long term use</th>
<th>Invasive short term use</th>
<th>Invasive long term use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low exposure</td>
<td>Phys: chem data</td>
<td>Cytotoxicity \emph{in vitro}</td>
<td>Cytotoxicity \emph{in vitro}</td>
<td>Cytotoxicity \emph{in vitro}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irritancy \emph{in vitro}</td>
<td>Irritancy \emph{in vitro}</td>
<td>Irritancy \emph{in vitro}</td>
</tr>
<tr>
<td></td>
<td>Hypersensitivity</td>
<td>Hypersensitivity</td>
<td>Hypersensitivity</td>
<td>Genotoxicity \emph{in vitro}</td>
</tr>
<tr>
<td></td>
<td>Genotoxicity \emph{in vitro}</td>
<td></td>
<td></td>
<td>General immuno toxicity testing</td>
</tr>
<tr>
<td>Medium exposure</td>
<td>Genotoxicity \emph{in vivo}</td>
<td>Other \emph{in vitro plus in silico testing}</td>
<td>20/30 day \emph{in vivo} toxicity test</td>
<td></td>
</tr>
<tr>
<td>Additional tests</td>
<td>Immuno toxicity at location site</td>
<td>Genotoxicity \emph{in vitro} and \emph{in vivo}</td>
<td>\emph{In vitro} and \emph{in vivo} (repeated dose) genotoxicity testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Persistence /accumulation studies at location site only</td>
<td></td>
<td>ADME including persistence /accumulation studies</td>
<td></td>
</tr>
<tr>
<td>High exposure</td>
<td>Selected \emph{in vivo} acute toxicity tests focussed on location site(s)</td>
<td>Selected \emph{in vivo} chronic toxicity tests focussed on location site(s)</td>
<td>\emph{In vivo} acute toxicity tests</td>
<td></td>
</tr>
<tr>
<td>Additional tests</td>
<td></td>
<td></td>
<td>\emph{In vivo} chronic toxicity tests may include repetotx depending on patient group</td>
<td></td>
</tr>
</tbody>
</table>

SCENIHR 2015
Risk assessment of nanomaterials used in invasive medical devices: a phased approach
Table 5: Framework for risk assessment of nanomaterials used in medical devices

<table>
<thead>
<tr>
<th>Release of nanoparticles</th>
<th>Non-invasive</th>
<th>Invasive</th>
<th>Invasive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short exposure</td>
<td>Long exposure</td>
<td>Short exposure</td>
</tr>
<tr>
<td>Low/insignificant</td>
<td>N/VL*</td>
<td>L/F**</td>
<td>L</td>
</tr>
<tr>
<td>Medium</td>
<td>L/F</td>
<td>L/F</td>
<td>L/F</td>
</tr>
<tr>
<td>High</td>
<td>L/F</td>
<td>L/F</td>
<td>F</td>
</tr>
</tbody>
</table>

F=full assessment L=limited assessment VL =very limited or N= no further assessment * =limited assessment if it can be shown that penetration/distribution is very limited.

** Full assessment when absorption is indicated in toxicokinetic studies
What is specific for “nano”?

● Identification might be an issue
 – Is the nanomaterial used in the product the same as used in the safety evaluation/toxicity studies
● The particulate character (it is not a soluble chemical)
 – Different toxicokinetics need to be considered
 – Size may be an issue
● Location of the nanomaterial
 – Embedded in matrix
 – Surface
● Exposure drives risk, so potential release and migration is important
 – This includes wear and tear
 – Also normal wear and tear may generate nanoparticles
● Free nanoparticle presents potentially the highest risk
● NPs may have specific characteristics, but no specific toxicity
What do we know about toxicological risk assessment of nanomaterials?

- The particulate nature of nanomaterials influences the toxicokinetics
 - ADME – absorption, distribution, metabolism, excretion
 - Dependent on size, shape, material, etc...

- Physicochemical and toxicological properties of nanomaterials (and surfaces) different from bulk material – parameters?
 - What value is border/turning point for toxic behaviour?

- Not all nanomaterial formulations are toxic
 - Increase in surface activity does not automatically imply toxicity

- You are dealing with many factors with a variety of effects
Risk assessment of nanomaterials in medical devices

- Identify the nanomaterial
- Exposure assessment
- Internal dose
- Hazard characterisation
- Hazard identification
- Dose response assessment
- Toxic
- Risk characterisation
In the end we need to consider the benefit for the patient that will be treated with the medical device.

Balance patient safety - availability of innovation.