Biocompatibility Evaluation of Ophthalmic Medical Devices

Simona Bancos, Ph.D.
Center for Devices and Radiological Health (CDRH)
Office of Health Technology 1
Division of Ophthalmic Devices

SOT-MDCPSS-OTSS Webinar
August 28, 2019
Presentation outline

• Examples of ophthalmic devices
• When biocompatibility is considered
• Biocompatibility-relevant FDA guidance documents and FDA-recognized standards for ophthalmic devices
• Overview of CDRH’s 2016 Biocompatibility Guidance
• Key changes to ISO 10993-1:2018 from prior versions of the standard
• Important risk-based considerations
• How chemistry information is used in biocompatibility evaluations
Key Definitions*

• **Biocompatibility**: ability of a device material to perform with an appropriate host response in a specific situation

• **Direct contact**: term used for a device or device component that comes into physical contact with body tissue

• **Indirect contact**: … device or device component through which a fluid or gas passes, prior to the fluid or gas coming into physical contact with body tissue (in this case the device or device component itself does not physically contact body tissue)

*CDRH’s 2016 Biocompatibility Guidance: https://www.fda.gov/media/85865/download
Key Definitions* (continued)

• **Final finished form**: term used for a device or device component that includes all manufacturing processes for the “to be marketed” device including packaging and sterilization, if applicable

• **Novel material**: material that has not previously been used in any legally US-marketed medical device

CDRH’s 2016 Biocompatibility Guidance
Examples of ophthalmic devices

Therapeutic
- Contact lenses and Contact lens care products

Prosthetic
- Keratoprosthesis, Intraocular lenses (IOL), Aqueous shunts

Diagnostic
- Ophthalmic camera, Ophthalmoscope, Tonometers

Surgical
- Phacophragmentation systems, IOL guide, Intraocular gas
Risk-based Paradigm

<table>
<thead>
<tr>
<th>Sunglasses</th>
<th>Contact lenses</th>
<th>Intraocular lenses</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Class I</th>
<th>Class II</th>
<th>Class III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk</td>
<td>Moderate risk</td>
<td>Highest risk</td>
</tr>
<tr>
<td>Most exempt from premarket submission</td>
<td>Premarket notification [510(k)]</td>
<td>Premarket Approval Application (PMA)</td>
</tr>
</tbody>
</table>

1http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/Overview/ClassifyYourDevice/
When Biocompatibility is Considered

- For all devices with direct and indirect patient contact component
- For new devices or changes to devices/device components with direct and indirect patient contact
- For all submission types: PMA, Humanitarian Device Exemption (HDE), Investigational Device Exemption (IDE), 510(k), and De Novo requests
How Biocompatibility is Considered

• Use of FDA guidance documents and FDA-recognized standards is recommended to facilitate information submission to FDA

• Existing FDA guidance documents and standards for ophthalmic devices provide considerations for recommended biological evaluation and testing
FDA Guidance Document

- Describes FDA’s interpretation of, or policy on, a regulatory issue
- Search for FDA Guidance Documents using the database on FDA website*

* https://www.fda.gov/regulatory-information/search-fda-guidance-documents#guidancesearch
FDA Guidance Documents for Ophthalmic Devices
(not a comprehensive list)

• Guidance Document for Class II Daily Wear Contact Lenses (1994)

• Guidance Document for Contact Lens Solution and Care Products (1997)
 https://www.fda.gov/media/72725/download

• Aqueous Shunts-510(k) Submissions-Guidance for Industry and for FDA Reviewers/Staff (1998)
 https://www.fda.gov/media/71885/download
FDA Guidance Documents for Ophthalmic Devices (cont.)
(not a comprehensive list)

 https://www.fda.gov/media/71810/download

 https://www.fda.gov/media/90950/download
FDA-recognized voluntary consensus standards

• The term “recognize” or “recognition” is defined in Section 514c of the Food, Drug, and Cosmetic Act

• “Recognize” refers to FDA’s identification of standards as appropriate for manufacturers of medical devices to declare conformance or to use the standard in a submission or other aspect to satisfy a requirement

• The extent of recognition varies:
 o Full recognition
 o Partial recognition
Search for FDA-Recognized Consensus Standards

Search for standards on the FDA website using the designation number and/or a keyword.

https://www.fda.gov/regulatory-information/search-fda-guidance-documents#guidancesearch
Search for FDA-Recognized Consensus Standards (cont.)

Part B: Supplementary Information Sheet (SIS)

FR Recognition List Number: 018
FR Recognition Number: 10-48
Date of Recognition: 09/12/2007

Standard
Ophthalmic implants - intraocular lenses - Part 5: Biocompatibility

Scope/Abstract
This part of ISO 11979 specifies particular requirements for the biocompatibility evaluation of materials for intraocular lenses (IOLs) including the processing conditions to produce them. These requirements include evaluation of physicochemical properties that are relevant to biocompatibility, it also gives guidance on conducting an ocular implantation test.

Extent of Recognition
Complete standard

Rationale for Recognition
This standard is relevant to medical devices and is recognized on its scientific and technical merit and/or because it supports existing regulatory policies.

Public Law, CFR Citation(s) and Procedure(s)

<table>
<thead>
<tr>
<th>Regulation Number</th>
<th>Device Name</th>
<th>Device Class</th>
<th>Product Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>5890.3600</td>
<td>Intraocular Lens</td>
<td>Class 3</td>
<td>HCL</td>
</tr>
<tr>
<td>5890.3600</td>
<td>Lens, Intraocular, Accommodative</td>
<td>Class 3</td>
<td>NAA</td>
</tr>
<tr>
<td>5890.3600</td>
<td>Lens, Intraocular, Toric Optics</td>
<td>Class 3</td>
<td>NIF</td>
</tr>
<tr>
<td>5890.3600</td>
<td>Lens, Iris Reconstruction</td>
<td>Class 3</td>
<td>NIB</td>
</tr>
<tr>
<td>5890.3600</td>
<td>Lens, Multifocal Intraocular</td>
<td>Class 3</td>
<td>NIP</td>
</tr>
</tbody>
</table>

Relevant FDA Guidance and/or Supportive Publications
There is no relevant guidance developed at this time.

FDA Technical Contact
Simona Bancos
FDADMPT@CDRH.HHS.GOV
301-798-8000
simona.bancos@fda.hhs.gov

Standards Development Organization
ISO - International Organization for Standardization
https://www.iso.org/

FDA Specialty Task Group (STG)
Ophthalmic
FDA-Recognized Consensus Standards for Ophthalmic Devices
(not a comprehensive list)

- ISO 9394 (Third edition, 2012): Ophthalmic optics- Contact lenses and contact lens care products - Determination of biocompatibility by ocular study with rabbit eyes
- ISO 15798 (Third edition 2013, Amended 2017): Ophthalmic implants - Ophthalmic viscosurgical devices
- ANSI Z80.27-2014 American National Standard for Ophthalmics - Implantable Glaucoma Devices
- ISO 18189 (First edition, 2016): Ophthalmic optics – Contact lenses and contact lens care products - Cytotoxicity testing of contact lenses in combination with lens care solution to evaluate lens/solution interactions
Contact Lens Biocompatibility
(Guidance Document for Class II Daily Wear Contact Lenses, 1994)

• Minimum recommended biocompatibility test for Class II Contact Lenses:
 ➢ Cytotoxicity
 ➢ Systemic toxicity
 ➢ Ocular Irritation

• The tests recommended for packaging materials
Contact Lens Biocompatibility
(Guidance Document for Class II Daily Wear Contact Lenses, 1994)

• Additional biocompatibility tests:
 o If a lens material is manufactured using a new monomer or an UV-absorber is incorporated which has not been cleared previously for same class of lenses using the same method of incorporation into the lens marketed by the manufacturer:
 ➢ Sensitization test
 ➢ Three week ocular irritation study in rabbits
Intraocular Lens Biocompatibility (ISO 11979-5)

• Biocompatibility Testing:
 ➢ Cytotoxicity
 ➢ Sensitization
 ➢ Genotoxicity
 ➢ Local Effects after Implantation
 ➢ Ocular Implantation Study
Intraocular Lens Biocompatibility (ISO 11979-5; cont.)

• Physicochemical Testing:
 ➢ Exhaustive Extraction
 ➢ Leachables
 ➢ Hydrolytic Stability
 ➢ Photostability against UV/Vis irradiation
 ➢ Neodymium-doped Yttrium Aluminium Garnet (Nd-YAG) Laser Exposure
 ➢ Insoluble Inorganics
Summary I

- Biocompatibility assessed for all devices with direct and indirect patient contact
- Biocompatibility assessment performed per FDA-guidance documents and FDA-recognized standards for the specific device
Summary I (cont.)

• Available FDA guidance and FDA-recognized standard documents are available for:
 - Contact lenses and contact lens care products
 - Intraocular lenses
 - Aqueous shunts
 - Minimally invasive glaucoma surgical devices
 - Keratoprosthesis
 - Viscosurgical devices
CDRH’s 2016 Biocompatibility Guidance

Use of International Standard ISO 10993-1, "Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk management process"

Guidance for Industry and Food and Drug Administration Staff

Document issued on: June 16, 2016

The draft of this document was issued on April 23, 2013.

For questions regarding this document, contact Jennifer Goode, 301-796-6374, jennifer.goode@fda.hhs.gov.

Focus:

How to use risk management to:

1) Address biocompatibility, and
2) Leverage existing testing, if possible

Instead of: What biocompatibility testing is needed?
ISO 10993-1: 2018

INTERNATIONAL STANDARD
ISO
10993-1
Fifth edition
2018-08
Corrected version
2018-10

Biological evaluation of medical devices —
Part 1: Evaluation and testing within a risk management process

Évaluation biologique des dispositifs médicaux —
Partie 1: Évaluation et essais au sein d’un processus de gestion du risque
ISO 10993-1: 2018 (cont.)

• The current edition contains revisions on:

 o New/revised definitions (Clauses 3.1 through 3.26)

 o New information on:

 ▪ Non-contacting (Clause 5.2.1) & transitory-contacting (Clause 5.3.2) medical devices

 ▪ Nanomaterials & absorbable materials
ISO 10993-1: 2018 (cont.)

• As compared to the Fourth edition, the current edition contains revisions on:

 o New/revised definitions (Clauses 3.1 through 3.26)

 o New information on:

 ▪ Non-contacting (Clause 5.2.1) & transitory-contacting (Clause 5.3.2) medical devices

 ▪ Nanomaterials & absorbable materials
ISO 10993-1: 2018 (cont.)

• Revised Annex A: This content is PARTIALLY recognized by CDRH

• Revised Annex B (to incorporate Technical Report (TR) 15499 Guidance): This content is recognized by CDRH
Key Changes to ISO 10993-1: 2018

• New information on Nanomaterials (not a comprehensive list):
 o Medical devices that contain, generate, or are composed of nanomaterials can pose specific challenges to the biological evaluation due to their potentially unique properties
 o Nanomaterials can pose specific challenges (e.g., assay interference)
 o Material characterization for nanomaterials conducted per ISO/TR 10993-22
Key Changes to ISO 10993-1: 2018 (cont.)

• Revised information on Absorbables (not a comprehensive list):

 o If a medical device is intended to change during its lifetime, such as those that are polymerized and/or degraded in situ, the evaluation shall consider all the different device states
Key Changes to ISO 10993-1: 2018 (cont.)

- Revised information on Absorbables (not a comprehensive list):
 - Degradation tests shall be considered if the medical device is designed to be absorbable
 - In vivo degradation tests might not be necessary if an in vitro/in vivo comparison for the absorbable medical device has been previously demonstrated
New title: “Endpoints to be addressed in a biological risk assessment”

New column: physical and/or chemical information

New column: material mediated pyrogenicity

Column reinstated: chronic toxicity

Column reinstated: carcinogenicity

Column reinstated: reproductive/developmental toxicity

Column reinstated: degradation

E (endpoints to consider) instead of X (tests to conduct)

This content is PARTIALLY recognized by CDRH. CDRH does not recognize Table A.1
ISO 10993-1: 2018, Annex A (cont.)

Annex A
(informative)

Endpoints to be addressed in a biological risk assessment

A.1 General

The following is a framework for the development of a biocompatibility evaluation and is not a checklist for testing. Where Table A.1 indicates that an endpoint is relevant for assessment, the existing data sets relevant to that endpoint should be evaluated to determine if any additional data sets are needed. For particular medical devices, there is a possibility that it will be appropriate to include additional or fewer endpoints than indicated.

In Table A.1, X means prerequisite information needed for a risk assessment; E means endpoints to be evaluated in the risk assessment (either through the use of existing data, additional endpoint-specific testing, or a rationale for why assessment of the endpoint does not require an additional data set assessment).

Any variation should be justified in the biological risk assessment. If there are device specific standards that include specific recommendations regarding biocompatibility, these should be considered.
ISO 10993-1: 2018, Annex A (cont.)

• Key recommendations in Annex A:

o “not a checklist for testing”

 o “there is a possibility that it will be appropriate to include additional or fewer endpoints than indicated”

 o “X means prerequisite information needed for a risk assessment”

This content is recognized by CDRH
Key recommendations in Annex A:

- “E means endpoints to be evaluated in the risk assessment… either through:

 - the use of existing data,
 - additional endpoint-specific testing, or
 - a rationale for why assessment of the endpoint does not require an additional data set assessment”
ISO 10993-1: 2018, Annex A (cont.)

• Key recommendations in Annex A:
 o “Any variation should be justified in the biological risk assessment”

 o “Device specific standards… should be considered”
- Table A.1: different endpoints are recommended for evaluation in the 2018 revision (as compared to the 2009 version of ISO 10993-1)

- Table A.1 not recognized by CDRH
ISO 10993-1: 2018, Annex A (cont.)

Table A.1 — **Endpoints** to be addressed in a biological risk assessment

<table>
<thead>
<tr>
<th>Nature of body contact</th>
<th>Contact duration</th>
<th>Physical and/or chemical information</th>
<th>Cytotoxicity</th>
<th>Sensitization</th>
<th>Irritation or inflammation</th>
<th>Irritation or other intracutaneous reactivity</th>
<th>Material mediated genotoxicity</th>
<th>Acute systemic toxicity</th>
<th>Subacute toxicity</th>
<th>Subchronic toxicity</th>
<th>Chronic toxicity</th>
<th>Implantation effects</th>
<th>Hemocompatibility</th>
<th>Genotoxicity</th>
<th>Carcinogenicity</th>
<th>Reproductive/developmental toxicity</th>
<th>Degradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface medical device</td>
<td></td>
</tr>
<tr>
<td>Intact skin</td>
<td>A - limited (≤24 h)</td>
<td>Xs</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B - prolonged (>24 h to ≤30 d)</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C - Long-term (>30 d)</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Mucosal membrane</td>
<td>A</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Breached or compromised surface</td>
<td>A</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Blood path, Indirect</td>
<td>A</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Externally communicating medical device</td>
<td>A</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Tissue/bone/dentin<sup>4</sup></td>
<td>B</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Circulating blood</td>
<td>A</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

✅ = consistent w/2016 Guidance; ❌ = not consistent w/2016 Guidance

Table A.1 — **Endpoints** to be addressed in a biological risk assessment

Note: Table A.1 NOT recognized by CDRH – see 2016 CDRH Biocomp Guidance Attachment A
ISO 10993-1: 2018, Annex A (cont.)

Table A.1 NOT recognized by CDRH – see 2016 CDRH Biocomp Guidance Attachment A

<table>
<thead>
<tr>
<th>Medical device evaluation</th>
<th>Contact duration</th>
<th>Nature of body contact</th>
<th>Physical and/or chemical information</th>
<th>Sensitizatio n</th>
<th>Irritation or intracutan eous reactivity</th>
<th>Material media ted pyrogenicity</th>
<th>Acute systemic toxicit yf</th>
<th>Subacute toxicityb</th>
<th>Subchronic toxicity</th>
<th>Chronic toxicityf</th>
<th>Implantation effectsb</th>
<th>Hemoc ocompatibility</th>
<th>Genotoxic ityd</th>
<th>Carcinogenicity</th>
<th>Reproduct ive/developmental toxicityc</th>
<th>Degradationd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue/bone</td>
<td>A - limited (<24 h)</td>
<td>A</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>B - prolonged (24 h to 30 d)</td>
<td>B</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>C - long term (>30 d)</td>
<td>C</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Blood</td>
<td>A</td>
<td>A</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>B</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>C</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

- Refer to ISO 10993-11:2017, Annex F.
- Information obtained from comprehensive implantation assessments that include acute systemic toxicity, subacute toxicity, subchronic toxicity and/or chronic toxicity may be appropriate if sufficient animals and timepoints are included and assessed. It is not always necessary to perform separate studies for acute, subacute, subchronic, and chronic toxicity.
- Relevant implantation sites should be considered. For instance, medical devices in contact with intact mucosal membranes should ideally be studied/considered in contact with intact mucosal membranes.
- If the medical device can contain substances known to be carcinogenic, mutagenic and/or toxic to reproduction, this should be considered in the risk assessment.
- Reproductive and developmental toxicity should be addressed for novel materials, materials with a known reproductive or developmental toxicity, medical devices with relevant target populations (e.g., pregnant women), and/or medical devices where there is the potential for local presence of device materials in the reproductive organs.
- Degradation information should be provided for any medical devices, medical device components or materials remaining within the patient, that have the potential for degradation.
- X means prerequisite information needed for a risk assessment.
- E means endpoints to be evaluated in the risk assessment (either through the use of existing data, additional endpoint-specific testing, or a rationale for why assessment of the endpoint does not require an additional data set). If a medical device is manufactured from novel materials, not previously used in medical applications, and no toxicology data exists in the literature, additional endpoints beyond those marked “E” in this table should be considered. For particular medical devices, there is a possibility that it will be appropriate to include additional or fewer endpoints than indicated.
- Tissue includes tissue fluids and subcutaneous spaces. For gas pathway devices or components with only indirect tissue contact, see device specific standards for biocompatibility information relevant to these medical devices.

✅ = consistent w/2016 Guidance; ✗️ = not consistent w/2016 Guidance
• Clause A.2 explains why the endpoints included in Table A.1 have changed

• Clause A.2 is recognized by CDRH
Clause 4.1 (last paragraph): “Evaluation can include both a review of relevant existing preclinical and clinical data and actual testing. Such an evaluation might result in the conclusion that no testing is needed if the material has a demonstrable safe history of use in a specified role and physical form that is equivalent to that of the medical device under design.”
Back to the 2016 CDRH Biocompatibility Guidance
When Biocompatibility is Considered

• For all devices with direct and indirect patient contact component
• For new devices or changes to devices/device components with direct and indirect patient contact
• For all submission types: PMA, HDE, IDE, 510(k), and De Novo requests
Attachment A: Evaluation Endpoints for Consideration

The following is a framework for the development of a biocompatibility evaluation and is not a checklist for testing. For particular medical devices, different biological endpoints may require evaluation, including either additional or fewer endpoints than indicated. If it is unclear in which category a device falls, we recommend consulting device-specific guidances or contacting the appropriate review division for more information.²⁶ For example, FDA has historically considered devices used to drain fluids (such as Foley catheters) as externally communicating devices rather than as surface devices contacting mucosal membranes.

Table A.1: Biocompatibility Evaluation Endpoints

<table>
<thead>
<tr>
<th>Medical device categorization by</th>
<th>Biological effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature of Body Contact</td>
<td></td>
</tr>
<tr>
<td>Contact Duration</td>
<td></td>
</tr>
<tr>
<td>A – limited (≤24 h)</td>
<td></td>
</tr>
<tr>
<td>B – prolonged (24 h to 30 d)</td>
<td></td>
</tr>
<tr>
<td>C – permanent (> 30 d)</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td></td>
</tr>
<tr>
<td>Intact skin</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
</tr>
<tr>
<td>Surface device</td>
<td></td>
</tr>
<tr>
<td>Mucosal membrane</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
</tr>
<tr>
<td>Breached or compromised</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
</tr>
<tr>
<td>External communicating device</td>
<td>Blood path, indirect</td>
</tr>
<tr>
<td>A</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
</tr>
</tbody>
</table>

²⁶ Device categorization information can be obtained informally via email, or as a part of ODE’s Pre-Submission process. Refer to FDA’s guidance document “Requests for Feedback on Medical Device Submissions: The Pre-Submission Program and Meetings with Food and Drug Administration Staff—Guidance for Industry and FDA Staff” (February 18, 2014).

NOTE: X/O marks are relevant to 2009 version of ISO 10993-1
Endpoint Assessment vs. Testing (cont.)

• 2016 CDRH guidance recommends that all endpoints marked with “X” and “O” be considered.

• To address all “X” and “O” endpoints sponsors can use:
 o Existing data,
 o Additional endpoint-specific testing, or
 o Rationale for why endpoint doesn’t require additional assessment.
Endpoint Assessment vs. Testing (cont.)

- **Relevance:** All endpoints identified by an “X” or “O” in Attachment A of 2016 Guidance may not be relevant for all devices in a particular category.

- **Novel materials/manufacturing processes:** Additional evaluations beyond those recommended in Attachment A of 2016 Guidance may be needed.

- **Multiple types of exposure:** Include information to address each exposure category.

This content consistent with 10993-1:2018
Sample Preparation

Use of International Standard ISO 10993-1, "Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk management process"

Guidance for Industry and Food and Drug Administration Staff

Document issued on: June 16, 2016

The draft of this document was issued on April 23, 2013.

For questions regarding this document, contact Jennifer Goode, 301-796-6374, jennifer.goode@fda.hhs.gov.

Comparison to test article: "The test article is identical to the medical device in its final finished form in formulation, processing, sterilization, and geometry and no other chemicals have been added (e.g., plasticizers, fillers, additives, cleaning agents, mold release agents)."

Comparison to previously marketed device: "The medical device in its final finished form is identical to [name] (previously marketed device) in formulation, processing, sterilization,
2016 FDA Guidance Recommendations for Chemistry Information

• In additional to biocompatibility testing, chemistry information may be requested

• Chemistry information may include descriptive information and/or chemical testing
Examples when FDA may request additional chemistry information (not a comprehensive list):

- Devices made from materials intended to change (e.g., in situ polymerizing or absorbable materials)
- Devices made from chemicals with known toxicities (e.g., carcinogenicity), where new biocompatibility testing is rarely conducted
- Devices made from novel materials
2016 FDA Guidance Recommendations for Chemistry Information (cont.)

• Descriptive information can include:
 o Chemical identity
 o Composition, formula/formula weight, structural information, manufacturing and purity information
 o Amount by weight percent and total amount (e.g., μg)
 o Identity of other US marketed devices with same chemical
2016 FDA Guidance Recommendations for Chemistry Information (cont.)

• To evaluate the patient exposure to the device/device component chemical(s), exposure information may be provided

• Exposure assessments may include:

 o Chemicals and related impurities that may be available over time
 o Consideration of repeat device use
 o Extractables/leachables modeling or studies to optimize estimation of exposure during clinical use
To evaluate the patient exposure to the device/device component chemical(s), safety assessments may be provided.

Safety assessments may include:

- Known data from toxicology literature or material supplier
- Derived Tolerable Intake (TI) or Threshold of Toxicological Concern (TTC) for unknowns, if TI cannot be derived.
Summary II

• Use recommendations of 2016 CDRH Biocompatibility Guidance for ophthalmic devices that do not have a specific FDA guidance and/or FDA-recognized standard document

• Biocompatibility assessment needed for changes to devices with direct and indirect patient contact

• Use Attachment A of the 2016 CDRH Biocompatibility Guidance when considering endpoint assessments for CDRH submissions (instead of ISO 10993-1:2018, Table A.1)
Summary II (cont.)

- Attachment A of the 2016 CDRH Biocompatibility Guidance may not be relevant for all devices in a particular category

- Additional evaluations beyond those recommended in Attachment A may be needed

- “Chemistry information” does not always require analytical chemistry testing

- ISO 10993-1:2018 revisions are consistent with the 2016 CDRH Biocompatibility Guidance (except Table A.1 in Annex A)