Drug Discovery Toxicology:
From Target Assessment to Translational Biomarkers

J. Eric McDuffie, PhD, MBA
Scientific Director
Predictive & Investigative Toxicology
Nonclinical Safety

What Do You Think It Takes to Make a Prescription Drug?
Presentation Overview

- Candidate drug discovery, target engagement, and preclinical efficacy
- Drug target validation and lead generation
- Preclinical testing and Investigational New Drug (IND) application filing
- Clinical trials (Phases 1, 2, and 3)
- New Drug Application (NDA) filing
- NDA review/decision on approval
- Phase 4 clinical studies

On Average, How Many Years Does It Take to Generate Sufficient Research Data to Support Approval of a Prescription Drug?
The Importance of Preclinical Safety Testing

- The estimated cost for developing a new drug is ~$2.6 billion
- Preclinical safety studies constitute ~15% of total drug development costs
- Clinical trials constitute ~30% of total drug development costs
- Approximately 70% of all discovery compounds do not become drugs due to early identification of preclinical safety findings
- The approval rate for candidate drugs entering clinical development is <12%
- The importance of preclinical safety testing is to decrease discovery research efforts for toxic compounds that are unlikely to become drugs

[Link to source: https://www.agozmed.com/2014/12/a-tough-road-cost-to-develop-one-new-drug-is-26-billion-approval-rate-for-drugs-entering-clinical-devel.html]
During the Initial Discovery Phase, How Many Steps Do Chemists Often Perform in Efforts to Discover a Candidate Prescription Drug?

Drug Discovery, Target Engagement, and Preclinical Efficacy

The drug discovery and target validation processes are intended to demonstrate potential correlations between preclinical and clinical readouts:

- Demonstrating drug-like properties (Target Engagement)
- Preclinical data (e.g., efficacy biomarker profiles) should inform backup compound selections

What Emerging Technology Do You Believe May Be Used to Help Validate a Candidate Prescription Drug?
Lead Candidate Drug Generation

The identification of a “lead compound” to progress toward preclinical safety testing includes:

• **In vitro assays** and **in vivo studies** aid the prioritization of compounds to identify a “lead compound” to progress toward preclinical safety testing

• **Predict compound-induced toxicologic risks to humans using in vitro, in vivo, and/or in silico models**

Case Example—In Vitro Assay: Receptor Selectivity for Ibrutinib

Ibrutinib

- Bruton’s Tyrosine Kinase (BTK) inhibitor
- Used to treat B cell malignancies
- Hits several other kinases at clinically and toxicologically relevant levels

<table>
<thead>
<tr>
<th>Kinase</th>
<th>IC_{50} (nM)</th>
<th>Median Cmax (unbound)</th>
<th>IC_{50} Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Btk</td>
<td>0.53</td>
<td>12.27</td>
<td></td>
</tr>
<tr>
<td>Blk</td>
<td>0.94</td>
<td>6.92</td>
<td></td>
</tr>
<tr>
<td>Bmx/Elk</td>
<td>1.1</td>
<td>5.01</td>
<td></td>
</tr>
<tr>
<td>ErbB4/Her4</td>
<td>1.23</td>
<td>5.29</td>
<td></td>
</tr>
<tr>
<td>Txx</td>
<td>2.87</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>Tec</td>
<td>5.49</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>Itk</td>
<td>11.7</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td>11.86</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>ErbB2/Her2</td>
<td>21.57</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Jak3</td>
<td>21.9</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Fgr</td>
<td>2.86</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>Ldk</td>
<td>3.49</td>
<td>1.86</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>3.94</td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>Csk</td>
<td>6.17</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>Brk</td>
<td>10.01</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Hck</td>
<td>16.98</td>
<td>0.38</td>
<td></td>
</tr>
</tbody>
</table>

What Do You Think It Takes to Ensure a Candidate Drug Is Safe for Humans?

Preclinical Safety Testing

1. Determination of the potential for general toxicity
 - Identification of target organs of toxicity
 - Delayed effects
 - Reversibility of effects
 - Probability of occurrence
 - Identification of appropriate parameters to monitor in the clinic

2. Characterization of the nature of the adverse effects
 - Cellular, biochemical, molecular

3. Determination of the potential for specialized toxicity
 - Reproductive and developmental
 - Ocular
 - Cardiogenic
 - Other "other" (e.g., immunotoxic, behavioral toxicity, neurotoxic)

4. Selection of appropriate doses for clinical trial
 - Initial starting dose
 - Dose escalation scheme

5. Assessment of risk versus benefit in relation to clinical indication
 - Normal volunteers
 - Patients
 - Identify 'at risk' populations

Preclinical Safety Testing

Preclinical Safety Study Design Considerations

- Species selection:
 - Typically default to rat and dog
- Dosing formulation testing
- Dose level testing:
 - At high enough exposure in good laboratory practice (GLP) studies to support Phase 1 clinical trial
- Study duration:
 - 5–14 days
- Clinical endpoints:
 - Clinical observations, body weights, and food consumption
- Pathology endpoints:
 - Clinical, routine, and molecular pathology

What Is Your Perceived Definition of a Translatable Safety Biomarker?
Translatable Safety Biomarkers

- TV: On-target related TOX
- LO: Expected potential TOX
- LLO: Unexpected TOX during single/repeated dosing
- FIH: Adverse drug reactions during clinical development
- PoC: Safety biomarkers for compound selection and mechanistic understanding
- Phase II/III: Candidate translational safety biomarker analysis to enable early prediction of ADRs, mechanistic understanding in issue solving, and patient selection

Investigational New Drug (IND) Application Filing

- **US FDA/CDER has 30 days to assess safety per the IND application**
 - No comments or minor → proceed with Phase I trial
 - Phone call or letter → clinical hold

 - **Why?**
 - Duration of toxicology studies (in two species) insufficient to support proposed clinical duration
 - Doses/exposures not high sufficient enough in toxicology studies
 - NOAEL not established in toxicology studies

- C_{max}: peak concentration
- AUC: area under the curve
- Time: time to peak concentration
List a Toxicity That Would Cause Regulatory Authorities to Enforce a "Clinical Hold" (aka Delay or Suspend Ongoing Research) for a Candidate Drug Trial in Humans.
Clinical Trial Holds: Partial or Complete

The reason for a clinical hold is concern for the safety of clinical trial participants.

- **Partial Clinical Hold**
 - Drug Delivery Device–Related Issues
 - When a gene therapy (e.g., brain) delivery device poses risk to humans

- **Complete Clinical Hold**
 - Developmental or Reproductive Toxicology
 - When a candidate drug is intended to treat a life-threatening disease or condition affecting both genders
Case Example: Candidate Drug-Induced Testicular Toxicity

- Candidate drug-induced testicular toxicity can lead to a clinical hold or very restrictive clinical enrollment and/or robust monitoring

Some images have been removed from this slide.

Questions?