Table Discussion Leader Instruction Guide

2017 In Vitro Lecture: Human Organs-on-Chips Testing—Strengths and Challenges

Timeline

11:30 am-12:00 pm Lunch
11:40 am Participants Cue Up Poll Everywhere Audience Response System Knowledge Inventory Questions

12:00 pm-12:10 pm Welcome from Dr. Barb Kaplan, Education Committee Chair Dr. John Morris, SOT President Thank you to Colgate-Palmolive Recognition of Guests and Awardees Introduction of Dr. Anthony Bahinski

12:10 pm-12:20 pm Lecture: Dr. Bahinski

12:20 pm-12:45 pm Discussion at Tables

12:45 pm-1:00 pm Discussion Summary Knowledge Inventory Questions

A. Knowledge Inventory (Poll Everywhere—respondents answer to the best of their ability)

1. How many tissue types do you think can be in a 3D organ model?
2. What two things do you think are critical to establish a 3D organ model?
3. What disease states can be modeled with a 3D organ model?

B. Focus of the Discussion

In vitro systems are important models for identifying effects and mechanisms by which xenobiotics produce toxicity. The complexity of in vitro culture systems can be increased with addition of a relevant cell type, which might help identify mechanisms more similar to that observed in vivo.

Background for Dr. Bahinski’s Presentation

Organs-on-Chips are microfluidic cell culture devices that recreate the specialized multicellular architectures, tissue-tissue interfaces, physicochemical microenvironments and vascular perfusion necessary to recapitulate organ-level physiology in vitro.
These microsystems could potentially fill the critical need for improved model systems to predict human efficacy, safety, bioavailability, and toxicology outcomes.

Organ-on-a-chip Models

- Recreate tissue-tissue interface that define organ structure
- Provide mechanical cues necessary for relevant physiology
- Precisely orient cells for high-resolution real-time imaging
- Control fluid flow through microfluidic channels
- Incorporate endothelium-lined vascular channels
 - To enable physiological vascular coupling between different organ chips
 - Permits real-time analysis of inflammation (recruitment of circulating immune cells)

C. Thought Questions (provided at the tables for the students)

1. **What considerations are needed to adapt the lung-on-chip to another organ (for example, the liver)?**

 - Cell types: hepatocytes, hepatic stellate cells, Kupffer cells, endothelial cells
 - Ratios of various cell types
 - Mechanics of blood flow, bile flow
 - Understanding of differential oxygenation throughout the liver
 - Increased metabolism capacity
 - If linking to other organs, ratio of liver tissue (mass) to other organs

2. **As a group, design a lung-on-chip system to evaluate a toxicant. Select a toxicant. What are the considerations as you design and set up the experiment to test the effect of the toxicant in this system?**

 - Deliver toxicants either directly or via inhalation (i.e., smoking)
 - Examine endpoints in the various cell types
 - Considerations: Vehicle of toxicant, concentrations–comparable to human exposures, use of parent compound or metabolite

3. **Using the lung-on-chip system, what kinds of different scenarios can you envision that might influence the effect of toxicant?**

 - Healthy versus disease
 - Disease state (pneumonia versus asthma)
 - Using various genetic backgrounds
 - Male versus female-derived cells (or in the presence of sex steroids)
 - Acute versus chronic exposures
 - High versus low toxicant concentrations
4. **How do the principles of the 3Rs apply to the lung-on-chip model?**

 Refine the model
 Reduce animal use by using the model instead and/or gain insight on species differences
 Ultimately replace animals

D. **Use these additional questions if time allows (not provided to the students).**

5. **What are the advantages of a 3D organ model over other *in vitro* models?**

 Better predictors
 More accurate
 Models 3D aspects/micro changes in interactions
 Use of human cells
 Interactions with blood, pressure, oxygen

6. **Would you expect inter-study variability to be high or low? Why?**

 Human sourced cells would produce inter-individual variability
 Highly controlled system would limit variability across replicates

7. **If you were designing a multi-tissue 3D organ model for smoking, what tissues might you include?**

 Cells from lung
 Cells from mouth, throat
 Heart
 Vascular cells
 Immune cells

8. **Do you think 3D models will replace current *in vitro* models? Why?**

 Not yet - Expense
 Not yet - Availability limited currently
 Not yet – Complexity
9. **What type of work do you think needs to be done to characterize these models to understand their predictivity to human diseases?**

- Understanding sex differences
- Understanding developmental influence on disease incidence
- Genetic differences
- Epigenetic differences
- Level of oxygenation to target tissue
- Level of blood flow
- Capability of metabolism
- Role of inflammation – either in target tissue or from distant site

E. Take home message to provide to the students near end of discussion

In vitro systems are important models for identifying effects and mechanisms by which xenobiotics produce toxicity. With testing advances, we continue to refine, replace, and reduce experimentation with animal models.

F. Knowledge Polling Questions are Repeated

1. How many tissue types do you think can be in a 3D organ model?
2. What two things do you think are critical to establish a 3D organ model?
3. What disease states can be modeled with a 3D organ model?

We thank the table hosts for encouraging and supporting the discussion and facilitating networking during this event.