Setting the Case Study Framework – An Introduction to PHOs

Martin Ronis, PhD, Professor, Department of Pediatrics, Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Associate Director for Basic Research, Arkansas Children’s Nutrition Center
Dr. RONIS HAS NO CONFLICTS OF INTEREST
Chemical Structure of Fats and Oils

Triglyceride Molecule

Glycerol                      Fatty Acid

Saturated Fatty Acid
Monounsaturated Fatty Acid
Polyunsaturated Fatty Acid
Physical Properties of Fats

- Melting point (solid vs. liquid at room temperature) determined by:

  a) Carbon Chain length

  b) Saturation

  c) Unsaturated bond geometry: cis vs. trans
Endogenous Fat Synthesis in Animals

Glycolysis/ Krebs Cycle          FA Synthesis Elongation Desaturation
Carbohydrates → Acetyl Co-A → 16:0 → 18:0 → 18:1 Dietary FAs
                   (Palmitate) (Stearate) (Oleate)

Triglycerides

Animal Fats: Lard (pork fat); beef tallow; dairy products are rich in 16:0/18:0 are solid at room temperature.
Vegetable Oils and Fish Oil

- Coconut and palm oil: Medium chain saturated FA, 16:0

- Vegetable Oils:

  Olive Oil: Mainly 18:1 MUFA, with 18:2 PUFA
  Soy Oil: Mainly 18:2, some 18:3 PUFA
  Canola Oil: 18:1, 18:2, some 18:3 PUFA
  Corn/Sunflower/Safflower: Mainly 18:2

- Fish Oils: EPA (20:5n-3) and DHA (22:6n-3) PUFA
Essential Fatty Acids

- Linoleic Acid (18:2n6)
- α-Linolenic Acid (18:3n3)
- Arachidonic Acid (20:4n6)
- Eicosapentaenoic Acid (20:5n3)

Prostaglandins, Thromboxanes, Leukotrienes, Resolvins HETES, HODES etc.
Hydrogenation of PUFA

18:2

Heat + H₂ + Catalyst

18:1

18:0
Cis vs. Trans Carbon Double Bonds

cis-but-2-ene

trans-but-2-ene
Trans Fat Formed During Manufacture of PHOs

- Oleic Acid (9 cis-18:1)
- Elaidic Acid (9 trans-18:1)
- Stearic Acid (18:0)
**PHO Uses in the Food Industry**

- Intermediate melting point of trans fats (13-44°C) results in PHO products immediately spreadable eg. margarines.
- Increased shelf life due to greater stability than PUFA to oxidation (rancidity).
- Superior baking properties.
- “Mouth feel”. Melts in mouth with no waxy after taste.

8 billion lb of soybean oil (50% production) hydrogenated in 2006.
Trans Fat Isomers in PHOs

- 16:1 t isomers: t-16:1n9, t-16:1n7
- 18:1 (elaidic acid + large range of isomers)
- 18:2 t isomers: 5 t isomers at 9, 12 or 15.
- Smaller amounts of 18:3 t isomers derived from longer chain PUFA.

Trans fat content up to 45% in manufactured PHOs
## Trans-FA Composition of Foods (% Total Fat)

<table>
<thead>
<tr>
<th>FA</th>
<th>Soybean Oil</th>
<th>Hydrogenated Oil</th>
<th>Baked Goods</th>
<th>Margarines</th>
<th>Shortening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linoleic</td>
<td>53</td>
<td>17</td>
<td>17</td>
<td>35</td>
<td>27</td>
</tr>
<tr>
<td>Linolenic</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>18:1 cis</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>18:1 trans</td>
<td>0</td>
<td>24</td>
<td>25</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>18:2 trans</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Consumption of PHO-Trans Fats

Overall: 5-10 g/d (2-4% energy in a 2000 kcal/diet)

By Country:

North America: 3 - 10 g/d
Greece, Italy, Portugal, Spain: 1.2 - 2.1 g/d
UK, France, Germany, Sweden: 2.4 - 3.0 g/d
Iceland: 6.7 g/d
Asian countries: 0.1 - 0.6 g/d
Australia: 3 - 8 g/d

Teegala et al. J. AOAC Int. 92: 1250-1257, 2009
“Natural” Ruminant trans Fatty Acids

Linoleic Acid
Linolenic Acid

Anaerobic Bacteria

Vaccenic Acid, Conjugated Linoleic Acid (CLA)
Total rTFAs: ~5% of diary product fat, 4% beef fat
CLA 4.5 mg/g dairy product fat, 4.3 mg/g beef
Average rTFA intake 1 - 1.7 g/d
rTFA Chemistry

Vacennic Acid (trans-11,18:1)

Rumenic Acid
90% CLA intake

CLA Capsules (supplement) are usually 50:50 9,11 and 10,12 CLA
Potential Toxic Effects of PHOs

Cardiovascular toxicity:

- Increased LDL/HDL Ratio
- Changes in lipoprotein particle size
- Increased plasma triglycerides
- Inhibition of cycloxygenase, prostaglandins

Evidence for increased inflammation: IL6, TNFα
Increased cellular adhesion

Increased abdominal obesity, insulin resistance, metabolic syndrome
Increased cancer risk
Infertility
Alzheimer’s Disease
Challenges to Toxicological Assessment of PHOs and Other Food Ingredients

Epidemiological/Observational Studies of Diet Effects

Complexity of diet composition: what do we measure, when and how?

- Food frequency questionnaires
- Chemical composition of foods, fluids
- Extrapolation of indicators eg. LDL/HDL

Potential confounders:

a) Other diet components
b) Weight, body composition, age, sex
c) Healthy worker effects
d) SES, Lifestyle, Smoking, Drinking
e) Independent risk factors eg. blood pressure
f) Accuracy of intake data
Challenges to Toxicological Assessment of PHOs and Other Food Ingredients

Clinical Trials on Health Effects of Dietary Components

How many meet the gold standard of placebo controlled, double blind?

Statistical limitations: small numbers of subjects

Short duration studies with surrogate endpoints

With macronutrients what is the appropriate control diet?

Dietary control: Did subjects eat what they were supposed to?

Is there enough data to determine dose-response slope and shape?

Is there a threshold for health effects?
Challenges to Toxicological Assessment of PHOs and Other Food Ingredients

Studies on Food Ingredients in Animal Models and Cell Culture

Advantages: Cheap, easy to generate mechanistic data.

BUT

Can they be extrapolated to people???

Species differences in lipid metabolism and development of diabetes

Do mechanisms identified in rodent models or in culture using individual dietary components apply to humans eating diverse food sources and diets?

Is the reductionist approach even possible in relation to the toxicological assessment of food ingredients?
Manufactured tFAs vs. Ruminant tFAs

Man-made bad, natural good?

Suggested health beneficial effects of ruminant tFAs:

- Improved body composition
- Cancer prevention

Are there differences in the biological properties and molecular mechanisms underlying effects of different tFAs – in PHOs or ruminant tFAs especially CLA?

Are the reported differences only related to dose?
Health Effects of PHOs and Trans Fatty Acids: Data from Clinical Trials – Dr. Martijn Katan, VU University, Amsterdam, The Netherlands

Epidemiological Studies on Health Effects of PHO: Strengths and Limitations of the Available Human Data – Dr. Ingeborg Brouwer, VU University, Amsterdam, The Netherlands


Mode of Action and Dose-Response Evaluation of the Effect of Partially Hydrogenated Oils on LDL-Cholesterol- Dr. Michael Dourson, TERA, Cincinnati, OH