Formaldehyde Dehydrogenase-Derived Formate Contributes to Cardioprotection in the Female Heart

Haley Garbus, 4th Year TPMM
Advisor: Dr. Mark Kohr
National Capital Area Chapter Webinar 1/19/23
Ischemic Heart Disease Is A Leading Cause Of Death

Ischemia/reperfusion (I/R) injury: inadequate blood supply reaching the heart, then more damage upon restoration of blood flow
Langendorff heart perfusion

Pre-ischemia Ischemia Recovery

Red tissue = alive, white = dead
Estrogen May Drive Cardioprotection

Estrogen → Unknown Processes → Cardioprotection

Formaldehyde Is Found...In The Heart?

- Estimated blood and intracellular concentrations estimated to be 87-400uM

- Background exposures can occur through food and the environment
Female Hearts Have Two-Fold More Formaldehyde Than Males

![Graph showing formaldehyde levels in males and females]

Formaldehyde (normalized ratio)

Male	Female
0.0 | 2.0

* Indicates statistically significant difference.
FDH Plays a Significant Role in Female Cardioprotection

Formaldehyde Dehydrogenase (FDH)

Cardioprotective Mechanisms

Use in one-carbon metabolism for:
• Nitric oxide signaling?
• Antioxidant defense?
FDH and ALDH2 Detoxify Formaldehyde to Formate

- Higher activity in females
- Is there a link to estrogen?

ALDH2 Activation Rescues Female FDH Knockouts

Female

ALDH2: Aldehyde Dehydrogenase 2

Infarct Size (% of Total Ventricle)

FDH
+/- -/- +/+ -/-

Alda-1
- - + +

* **
Does Formate Protect Against I/R Injury?

![Graph showing functional recovery and infarct size in males and females with different treatment times.](image)

- **Formate**
- **Ischemia**
- **Reperfusion with formate**

<table>
<thead>
<tr>
<th>Time</th>
<th>Formate</th>
<th>Ischemia</th>
<th>Reperfusion with formate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 min.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 min.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 min.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recovery/Infarct Size

Significant difference.
Yes!

Reperfusion with formate

Recovery/Infarct Size

<table>
<thead>
<tr>
<th>Ischemia</th>
<th>Formate</th>
<th>10 min.</th>
<th>20 min.</th>
<th>25 min.</th>
<th>120 min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* * *

Formate 25 min. 120 min.

Johns Hopkins Bloomberg School of Public Health
Formate Rescues FDH Knockout Hearts
Females Have Higher Cardiac Levels of Certain One-Carbon Enzymes

Produce formaldehyde
Formate May Serve as a One-Carbon Source in One-Carbon Metabolism

- Many cellular processes
- Link to cardioprotective signaling?
Possible Mechanism: NO Signaling

Formaldehyde \rightarrow Formate

\[\text{BH4} + \text{NOS} \]

Formate may act through the folate cycle to enhance BH4/NOS interactions

\[\text{NO} \]

Cardioprotection
Possible Mechanism: Antioxidant Defense

• GSH:
 • Shields from reactive oxygen species (ROS)
 • Sex differences
 • Higher antioxidant capacity in females

[Chemical structures and formulas]
Formate Increases Nitrosylation in Vitro

Mechanisms to explore:
- BH4 production
- eNOS coupling
- eNOS activity other NOS isoform
Bigger Picture

• Heart disease is a leading cause of death for both men and women, but females are protected.

• Formate, a metabolite of formaldehyde, appears to protect the heart.

• Understanding the biology of the female heart may inform prevention and treatment of heart disease.
Acknowledgements

Kohr Laboratory
Dr. Mark Kohr
Dr. Oby Ebenebe
Nicole Taube
Raihan Kabir
Michael Fitch

Thesis Advisory Committee
Dr. Mark Kohr
Dr. Joseph Bressler
Dr. Brian O'Rourke
Dr. David Kass

Funding Sources
T32
NIH R01: HL136496
WW Smith Charitable Trust: H1902
American Heart Association
Predoctoral Fellowship
NIH F31" HL165820-01