

ARAB TOXICOLOGISTS ASSOCIATION

FALL 2023 NEWSLETTER

In This Issue

- President's Message
- 2023-2024 Executive Board
- ATA Awards
- An Interview with Dr. Abdel-Razak M. Kadry
- Scientific piece by Dr. Mouna Zachary
- Mawhiba Program for Young Scientists
- Reminders and more!

President's Message

Dear ATA Members and All Toxicologists,

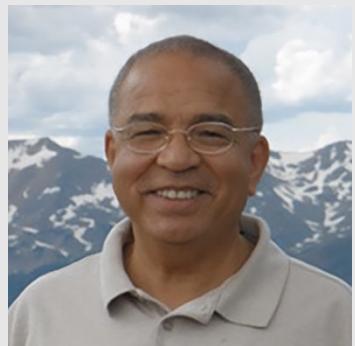
It takes courage and perseverance to accomplish a life goal. This needs a solid initiative, and that is why a journey of a thousand miles begins with a single step. A significant achievement is made through small achievements; therefore, the impossible becomes possible. The success of ATA started with a small group, of less than 10 members, but eventually, our enthusiasm and passion guided us to face all obstacles and grew to more than 50 people within a short time.

This successful journey of ATA gave me the honor and privilege to serve as the 2022-2024 president of the Arab Toxicologists Association (ATA). I want to start with a warm welcome to ATA's new officers and new members! Thank you for being part of ATA. This Special Interest Group serves whoever is interested in toxicology from any part of the world, particularly the Arab regions. ATA provides a platform for interactions among toxicologists from government, industry, and academia by organizing scientific seminars, workshops, and educational programs or events in toxicology.

ATA is key to exploring and developing connections with other members and maximizing the benefits of ATA membership. The ATA website provides information about ATA and SOT, seminars, educational courses, awards, governance, educational outreach, and other scientific events. Being a member of ATA, you will discover new opportunities for communication, collaboration, and connection with your fellow members. These opportunities are possible because ATA has members from global sectors such as the US Environmental Protection Agency (US EPA), the US Food & Drug Administration (US FDA), companies, industries, and academia.

It is essential to recognize the individuals who keep the ATA going. So, I genuinely appreciate and thank all of our members and volunteers for their continuous support, service, and dedication to the ATA since 2019, when this group was established. There are vacant positions for whoever would like to participate as a new officer, which is announced yearly. ATA leaders serve on several committees, including newsletters, awards, scientific programs, postdoctoral and graduate student representatives, and other committees.

Saif Abdullah Alharthy, MSc, PhD, NEBOSH
ATA President 2022-2024


ATA Executive Board 2023–2024

President
*Saif Abdullah Alharthy,
MSc, PhD, NEBOSH*

Vice President
Maha Almazroua, PhD

Vice President-Elect
*Abdel-Razak M. Kadry,
DVM, PhD, DABT*

Secretary/Treasurer
*Wafaa Ayad, MD, PhD,
DABT, ERT*

Councilor
*Ola Wasel, MPH, MS,
PhD*

Councilor
Wafa Harrouk, PhD

**Postdoctoral
Representative**
*Saeed Alqahtani, MSc,
PhD*

**Graduate Student
Representative**
Saamera Awali, BS

ATA Awards

**Are you of Arab origin?
Are you an SOT and ATA member?**

APPLY FOR 2024 ATA AWARDS!

Graduate Student Best Abstract Award

Winners will receive a plaque for outstanding scientific research in the toxicological sciences.

Best Publication Award

Winners will receive a plaque for outstanding scientific research in the toxicological sciences.

Distinguished Scientific Presentation Award

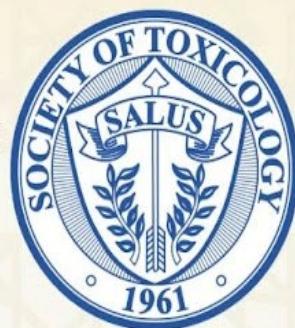
Postdoctoral fellows will receive a plaque award as a recognition and celebration of their contribution to the toxicological sciences that embody the ATA-SIG mission.

Outstanding Professional Award

A young investigator whose work exemplifies the mission of ATA-SIG will be given a plaque and a recognition certificate.

DR. BURHAN GHANAYEM Outstanding Graduate Research Award

This award recognizes and celebrates a graduate student's success in carrying out high-quality research in Toxicological Sciences.


The recipient of the award will receive \$500 and a plaque.

Deadline for applications: January 8, 2024

To Apply, use the barcode to direct you for submitting your complete application.
For questions, contact the ATA representative by email: sot.ata.awards@gmail.com

For all details and conditions, please visit:
<https://www.toxicology.org/groups/sig/ata/awards.asp>

ATA 2023 Awardees

Graduate Student Best Abstract Award

Merna Gress
New York University

Saamera Awali
Michigan State University

Veronia Basaly
Rutgers University

Dr. Burhan Ghanayem Outstanding Graduate Research Award

Ali A. Shohatee
St. John's University

ATA-SIG Outstanding Professional Award

**Ahmed Abdelmoneim,
BVMS, MS, PhD**
Louisiana State University

ATA-SIG Distinguished Scientific Award

Mohamed A. Ghorab, PhD
US EPA

Interview with Dr. Abdel-Razak M. Kadry, DVM, PhD, DABT: Thirty-Five Years of Toxicology and Outreach

Dr. Kadry is a well-respected and qualified expert in the field of toxicology. He is currently an adjunct faculty member at the University of Maryland and Georgetown University. Dr. Kadry's career has been nothing short of enriching for him, and he shares some of his experiences and advice in this interview.

When and why did you come to the USA and how did you make that decision?

Performing scientific research in USA laboratories was always a dream of mine since I embarked on my journey as a graduate student after graduating as a veterinarian from Cairo University. The moment I set foot on the path of higher education; I knew that I was destined to explore the world of science. I eventually completed my master's and PhD in Toxicology, both at Zagazig University.

My PhD project was a significant milestone in my academic career, focusing on the detection of residues of environmental pollutants such as Fenpropophacin and Dibenzanthracene. The knowledge I gained during this research opened new horizons and possibilities in the field of toxicology.

I was enjoying the research and teaching as a faculty in Zagazig University, Faculty of Veterinary Medicine. One day, in 1982, an incredible opportunity came knocking on my door in the form of an invitation from Professor Jim Flesher at the University of Kentucky. Professor Flesher was a renowned pioneer in the study of PAH carcinogenesis, a field I was deeply passionate about. Without hesitation, I accepted the invitation to join his lab as a postdoctoral fellow. The rest is history.

Can you share with the readers your professional journey as a toxicologist?

My time in Professor Flesher's laboratory was nothing short of incredible. We had a wonderful collaboration that pushed the boundaries of our research. Together, we worked tirelessly and produced several research publications and even contributed to a book chapter, which was a dream come true for me.

As my journey continued, I was fortunate enough to join Dr. Wyman Dorough's laboratory as a postdoctoral fellow. In this new phase of my scientific career, I focused on the kinetics of chlordane, a critical step in understanding the impact of this toxic substance. It was a challenging yet immensely rewarding experience.

During my tenure in Kentucky, I had the privilege of collaborating with many other pioneers in the field, including Dr. Gary Gairola. We conducted mutagenesis assays of PAH

carcinogens and some pesticides, which added another layer to my research experience. The synergy of ideas and expertise during this period was truly remarkable.

My journey through the world of toxicology has been nothing short of a thrilling adventure, filled with incredible opportunities and rich experiences. After my time in Kentucky, I was incredibly fortunate to embark on a new chapter in my career by joining the esteemed Dr. Mohamed Abdel-Rahman as a postdoctoral researcher at the University of Medicine and

Dentistry of New Jersey (UMDNJ) in Newark, New Jersey. Dr. Abdel-Rahman is internationally renowned in the field of toxicology and was leading research with substantial funding from various federal and private sources, focusing on the bioavailability and pharmacokinetics of drugs and environmental pollutants.

In my continuous pursuit of growth and learning, I decided to explore the realm of industry. I joined a contract testing laboratory as a senior scientist and

laboratory manager, delving into the business aspect of toxicology. Over the course of two years, I gained valuable insights into science management and marketing, broadening my horizons.

While my industry experience was educational, I found that my heart truly belonged in academia. I returned to the world of research and teaching at UMDNJ, where I served as a research scientist and faculty member for 12 years. This period was characterized by immense productivity, enjoyment, and scientific fulfillment. Collaborating with experts like Dr. Mohamed Abdel-Rahman, Dr. Rita Turkall, and Dr. Gloria Skowronski, we produced an extensive body of peer-reviewed publications, authored book chapters, and delivered countless conference presentations on the bioavailability of environmental pollutants in soil. Notably, I collaborated with Dr. Rita Turkall in establishing the first undergraduate degree program in toxicology, marking a significant milestone in my academic journey.

In 1998, I took on a new challenge by joining the federal government. My journey continued as I became a toxicologist at the USDA's Food Safety and Inspection Service (FSIS) and later rose to the position of Chief of Risk Assessment. In 2006, I accepted a pivotal role at the US Environmental Protection Agency (US EPA) as the director of the Integrated Risk Information System (IRIS) program. Over five years, I led a team of 42 dedicated scientists and presided over one of the largest and most influential risk assessment programs in the world. It was a time of unprecedented productivity and achievements, often referred to as the golden era of IRIS.

In 2014, I had the privilege of joining the University of Maryland as an adjunct professor, sharing my expertise in risk assessment with the next generation of scientists. In 2022, I expanded my academic reach by becoming an adjunct professor of Toxicology at Georgetown University.

In the past five years, I've had the unique opportunity to serve as a visiting professor of toxicology and risk assessment at the University of Buea in Cameroon. This international collaboration has enriched my career and allowed me to share my knowledge on a global scale.

My journey through the diverse landscapes of academia, industry, and government service has been a tapestry of growth, achievement, and discovery. It's a testament to the endless possibilities and the transformative power of dedication to the field of toxicology. Each chapter of my career has been an incredible learning experience, and I look forward to the exciting adventures that lie ahead in the world of science and education.

What is your advice for new toxicologists seeking good jobs in the Federal government?

1. Believe in Yourself: As a toxicologist, it's essential to have confidence in your abilities and expertise. Never let self-doubt hold you back, and remember that your unique background, including any accent that may signify a multicultural heritage, is an asset that contributes to the diverse tapestry of the United States.
2. Stay Positive: Maintaining a positive attitude is crucial. When applying for opportunities, focus on your strengths and what you can bring to the table. Don't dwell on the possibility of failure; instead, present your qualifications and capabilities with confidence.
3. Thoroughly Research Job Opportunities: To start your career in the Federal government, regularly visit the official website for job openings, www.usajobs.gov. This portal provides access to thousands of new opportunities every day. Take the time to carefully review job listings and understand the requirements.
4. Complete Required Applications: Ensure you fill out all required applications accurately and submit them on time. Attention to detail is crucial in the application process. Follow the instructions provided in the job postings to the letter.
5. Transparency in Selection: The Federal government follows a transparent and well-defined selection process. Understanding the process and adhering to the rules is key. Demonstrating your qualifications and belief in your abilities will go a long way in the selection process.

What difficulties do you face as an Arab toxicologist working outside the Arab world?

Transitioning to a new culture, research system, and way of life in a foreign society can be both exciting and challenging. One of the most common difficulties newcomers face is understanding the boundaries of these new dynamics while still cherishing their own cultural

heritage. Striking a balance between embracing the best of Western ideals and preserving one's Arab traditions is a journey that, once achieved, can make everything else feel easy.

For many of us who have embarked on this transformative journey, it often begins with a sense of awe and curiosity about the opportunities and experiences that the Western world has to offer. The allure of cutting-edge research, advanced educational systems, and a different way of life beckons. However, this initial enthusiasm can be accompanied by feelings of uncertainty and even a sense of cultural displacement.

The key to navigating this complex transition is to recognize that cultural integration is not about replacing one's traditions, values, and identity with those of the new society. It's about weaving the best of both worlds together to create a richer tapestry of life.

Learning from the West can mean embracing qualities such as individualism, innovation, and an openness to new ideas. These attributes are invaluable in the world of academia, research, and professional development. Simultaneously, preserving Arab traditions means staying connected to our roots, our history, our values, and our sense of community.

The journey to find this balance is a process of self-discovery. It involves engaging with people from diverse backgrounds, embracing new experiences, and learning to adapt without losing one's identity. It's about appreciating the strengths of both cultures and recognizing that they can coexist harmoniously.

Once this equilibrium is achieved, the rest of the journey becomes remarkably smoother. You find yourself thriving in the Western research system, benefiting from the academic freedom and innovative spirit it offers. Simultaneously, you cherish the wisdom of your Arab traditions, applying it to enrich your relationships, and draw on the strength of your heritage to connect with others who share similar values.

The beautiful result is a fusion of the best of both worlds, a life that honors your roots while embracing new horizons. It's a testament to the human ability to adapt, grow, and find harmony amid change. This harmonious coexistence is the path to personal and professional success, a journey of self-discovery and a celebration of the diverse tapestry of our global society. It's the perfect balance that transforms the daunting into the doable and the complex into the beautifully simple.

Endocrine Disrupting Chemicals: Definition, Health Effects, Examples, and Regulatory Control

By Dr. Mouna Zachary

Background

Endocrine Disrupting Chemicals (EDCs) are chemicals of high concern that are found in our daily products—from plastics, cosmetics, pesticides to even children’s toys. EDCs can be naturally occurring or man-made chemicals and the presence of these chemicals in commonly used products ensures that humans will be exposed on a daily basis via ingestion, inhalation, or direct dermal contact. It is estimated that there are about 1,000 chemicals used in consumer products that could have the potential to be EDCs. EDCs disrupt the endocrine system of humans and other living organisms by interfering with the normal function of the hormonal system and as a result cause a variety of harmful effects, many of which are seen only after extended periods of exposure. Examples of such effects include fertility and reproductive disorders, diabetes, and obesity. In fact, obesity is now a worldwide problem and studies show that exposure to EDCs has been causally associated with an increase in obesity in humans. The risk for adverse effects is especially high for infants and children when developmental growth is still undergoing in multiple developing tissues during young age. Therefore, it is important to properly identify and regulate the use of such chemicals in consumer products to minimize exposure and safeguard the health of current and forthcoming generations of children.

Identifying EDCs

In order to identify EDCs, it is necessary to have some basic understanding of the human endocrine system and how natural hormones work in the body. The endocrine system, commonly known as the hormonal system, is a network of different glands that produce, store, and secrete hormones such as insulin, thyroid hormone, estrogens, and androgens. Those hormones regulate physiology and behavioral processes in the human body (e.g., normal growth, fertility, and reproduction) and function at low doses such as minor disruptions in those levels may cause significant developmental and biological effects.

EDCs often disrupt endocrine systems by interfering with the synthesis, secretion, circulation, or binding to specific hormone receptors in such a way that they increase or decrease their levels or affect the body's response. The developing fetus and neonate are the most vulnerable to endocrine disruption.

There is a lack of consensus among scientists and policy makers in defining the endocrine disruptor chemicals. The Endocrine Society has defined an EDC as “any chemical or mixture of chemicals that interferes with any aspect of hormone action” whereas the World Health Organization (WHO) developed a definition for endocrine disruptors chemicals that specifically requires that an adverse effect is documented. The WHO argues that it is possible for a chemical to interact with the hormonal system without causing harm due to

compensation by the normal biological control mechanisms. An example of this is when we eat sugar, the system responds by increasing the secretion of the hormone insulin by the pancreas.

Identifying a chemical as an EDC is a huge challenge due to the complex and critical roles of the endocrine system in maintaining the homeostasis of all biological processes, as well as the multiple pathways and mechanisms involved. The only available guidance on the hazard identification of substances with endocrine-disrupting properties is the European Food Safety Authority (EFSA) and the European Chemicals Agency (ECHA) guidance on identifying endocrine disrupting chemicals in pesticides and biocides. This guidance applies the criteria established by WHO in which a substance is considered to be an endocrine disruptor if it is known to cause adverse effects on humans and/or non-target organisms, if it alters the functions of the endocrine system, and if the observed adverse effects are the consequence of the endocrine system's mode of action. According to the EFSA/ECHA guidance, the weight of evidence approach should be used to consider all available scientific data in the assessment. The guidance also recommends a set of bioassays to detect EDCs that are validated for the Estrogen-, Androgen-, and Thyroid hormones, and for Steroidogenesis pathways (EATS).

Another system that introduces the hazard identification of EDCs is the CLP (European Regulation (EC) No 1272/2008 on classification, labelling and packaging of substances and mixtures), the European implementation of the Globally Harmonized System of Classification and Labelling of Chemicals (GHS). Two hazard categories of endocrine disruptors have been created in CLP based on their scientific strength of evidence, known or presumed endocrine disruptors (Category 1) and suspected endocrine disruptors (Category 2), for both human health and the environment. In addition, the CLP sets out a list of substances that meet those criteria. The new list includes over 1,000 chemicals, such as bisphenol A, phthalates, and parabens, which are commonly used in consumer products.

Examples and Regulatory Restrictions

According to the Endocrine Society, there are nearly 85,000 human-made chemicals in the world, and 1,000 or more of those could be endocrine disruptors, based on their unique properties. They represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. Many authorities worldwide are aware of the risks associated with the use of EDCs and realize that such chemicals cannot be completely avoided or removed, but they have implemented regulatory systems (banning or restricting the use of such chemicals) to reduce exposure to EDCs and their risk for any potential health. While the EU has the most well developed and far-reaching regulations for EDCs and is considered a conservative hazard-based region, the approach taken in the United States (US) is limited (risk-based) and is totally absent in other countries. Examples of the most common and well-studied EDCs, their uses, and regulatory statutes across the globe are shown below in Table 1.

Table 1: Examples of EDCs (uses and policy actions)

Chemical Name (Class)	Where it is used	Regulatory Approach
-----------------------	------------------	---------------------

Di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and butylbenzyl phthalate (BBP) (Phthalates)	Plasticizer in food packaging, toys, building materials, and medical devices. Also found in air fresheners and cosmetics.	Banned or restricted in children's toys in the following countries: EU, Canada, Israel, Brazil, Hong Kong, Australia, China Also mostly banned as cosmetic components in the EU
Bisphenol A (BPA)	Used in the manufacture of polycarbonate plastic which can be found in reusable kitchenware (plates, mugs etc.).	Banned or restricted in infant baby bottles or food contact materials intended for infants in the following countries: EU, South Africa, India, Canada, Israel, Brazil, US Brazil: also ban on importation; Sweden: ban on epoxies for household water pipes. Also, its use in thermal paper is banned in the EU .
Nonylphenol and its ethoxylates (NP and NPEs)	Consumer laundry detergents, soap, textile processing; pulp and paper processing; and pest control products.	Its production is banned in the EU countries . Also imported textiles and clothing containing nonylphenol ethoxylates are banned in the EU. Canada and Japan enforce limits on manufacturing, use, and imports of products containing these chemicals.
Polybrominated diphenyl ethers (PBDE) (Organohalogen flame retardants)	Used in the manufacture of furniture and electronics to make them less flammable.	Banned in 50+ countries under the Stockholm Convention (2009) (US not a signatory). In the US , the Environmental Protection Agency (US EPA) banned

		PBDEs from commercial use in 2009 after coming to an agreement with manufacturers to phase out most uses of PBDEs by the end of 2013.
Lindane (Chlorinated hydrocarbons/ organochlorine)	Pesticides	Banned in 50+ countries under the Stockholm Convention (2009) . Still permitted as second-line medical treatment in some countries (e.g., US)
Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) (Per- and polyfluoroalkyl substances (PFAS))	Firefighting foam, nonstick pans, paper, and textile coatings.	Banned in 50+ countries under the Stockholm Convention (2009) . In the US, a number of states ban the sale of consumer products containing intentionally added PFAS.
Naturally Occurring	Phytoestrogens (genistein and coumestrol) are naturally occurring estrogens, found in human and animal food (e.g., components of infant soy formula)	Most people probably regularly eat naturally occurring estrogens without experiencing any harmful effects. However, some experts suggest that babies and infants should not be fed exclusively with soya milk as a precaution to EDCs.

Conclusion

Due to the complexity, breadth, and rapid development of methods to identify EDCs and in the regulatory frameworks, it is neither feasible nor possible for this article to include in-depth detail and discussion related to all the potentially relevant aspects of EDCs. It instead provides a snapshot of the current state of the field of EDC as well as provides references to additional resources on this topic. As briefly explained above, many regulatory authorities in the US and Western countries support risk assessment and risk management of EDCs as a pragmatic, protective, and effective basis of regulation. However, in countries such as the Arab States of the Gulf (GCC) where the use of EDCs seems to be more widespread and less well regulated, governments and concerned authorities should implement regulatory systems to phase out the manufacturing and use of such chemicals in order to protect future generations and the environment from the harmful effects of EDCs.

Supporting Documents

Additional information can be found at the following links:

- 1- European Chemicals Agency-European Food Safety Authority (ECHA/EFSA). 2018. Joint Research Centre. Guidance for the identification of endocrine disruptors in the context of regulations (EU) No 528/2012 and (EC) 1107/2009. EFSA J 2018; 16: 1–135. Available: <https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2018.5311>
- 2- European Chemicals Agency (ECHA). 2023. Endocrine Disruptor Lists (collaboration of some EU Member State national authorities). Available: <https://edlists.org/the-ed-lists>
- 3- Gore AC, Chappell VA, Fenton SE, Nadal A, Prins GS, Toppari J and Zoeller RT. 2015. EDC-2: The Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev:36: e1–150. Available: <https://academic.oup.com/edrv/article/36/6/E1/2354691?login=false>
- 4- Government of Canada. 2022. Consideration of endocrine related effects in risk assessment. Available: <https://www.canada.ca/en/health-canada/services/chemical-substances/fact-sheets/consideration-endocrine-related-effects-risk-assessment.html>
- 5- Kassotis CD, Vandenberg LN, Demeneix BA, Porta M, Slama R, Trasande L. 2020. Endocrine-disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes Endocrinol: 8(8):719-730. Available: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437819/>
- 6- Ministry of Environment Japan. 2023. Further actions to Endocrine Disrupting Effects of Chemical Substances. Available: <http://www.env.go.jp/en/chemi/ed.html>
- 7- United States Environmental Protection Agency (US EPA). 2023. US EPA screening lists for endocrine disruptors. Available: <https://www.epa.gov/endocrine-disruption>
- 8- United States Environmental Protection Agency (US EPA). 2023. How does EPA use information from the endocrine disruptor screening program. Available: <https://www.epa.gov/endocrine-disruption/how-does-epa-use-information-endocrine-disruptor-screening-program>
- 9- World Health Organization (WHO). 2013. United Nations Environment Programme: The state of the science of endocrine disrupting chemicals. Geneva. Available: http://www.who.int/iris/bitstream/10665/78101/1/9789241505031_eng.pdf

Mawhiba Program

YOUNG SCIENTISTS Saudi Talents Program

Mawhiba Program

The Mawhiba Program, also known as the King Abdulaziz and his Companions Foundation for Giftedness and Creativity, is a non-profit endowment organization in Saudi Arabia. Its primary aim is to identify and nurture talented and gifted students in scientific fields. A significant initiative of Mawhiba is the Advanced Program for Science and Math, launched for the 2023-2024 academic year, which provides a supplementary curriculum in these subjects for gifted students.

Dr. Saif Alharthy, serving as the President of ATA, has notably contributed to the nurturing of young scientific talents, particularly in guiding four aspiring scientist girls—Mayar, Almas, Azzah, and Lilian—from Intermediate and Secondary Schools. These students demonstrated remarkable ability and aptitude in the field of scientific research under Dr. Alharthy's mentorship.

برنامـج موهـبة
لـأسـاسـيات الـبـحـثـ الـعـلـمـي

Mawhiba Scientific Research Foundations Program

Mayar Choudry won a prize for the best scientific content poster in the Mawhiba program which is a significant accomplishment, especially considering the supervision and guidance provided by Dr. Alharthy. This recognition highlights the intersection of talent, dedication, and expert mentorship.

Mayar Choudry's success in this program reflects not only

New Member Spotlight

It is our pleasure to welcome new members of the ATA. As an ATA member, you have opportunities to collaborate and connect with your fellow members at the regional and national level.

You can find out more on the ATA SOT website, including information on meetings, awards, newsletters, and more!

WELCOME NEW MEMBERS

NAME	AFFILIATION
Ahmed Aladhami	University of South Carolina, United States
Ayman El-Kadi	University of Alberta, Canada
Fahad Almarshadi	University of Ha'il, Saudi Arabia
Iyas Masannat	San Diego State University, United States
Maged Abdel Zaher Ali	Egyptian Armed Forces, Egypt
Madhawi AlMutairi	Naif Arab University for Security Sciences, Saudi Arabia
Mahmoud Elghiaty	University of Alberta, Canada
Merna Maher Fekry Gress	New York University, United States
Nada Daood	Rowan University, United States

Deadlines, Reminders, and More!

Upcoming Reminders and Deadlines:

- SOT Annual Meeting → March 11-14, 2024
 - Register for the meeting [here](#)
 - Early-bird deadline is January 19, 2024
 - General deadline is February 16, 2024
- ATA Award Deadlines → January 8, 2024
 - Apply for awards [here](#)

Annual Meeting Features:

- Mark your calendars to attend and support ATA members' work and events at the Annual Meeting. Highlights include:
 - ATA Reception:
 - Tuesday, March 12, 2023 @ 7:30 pm (location TBD)
 - Tiny Tox Talks:
 - From Passion to Prestige: The Nexus of Toxicology, Leadership, and Empowering Women in Science by Hadil Al-Muhsen
 - Monday, March 11, 2024 @ 10:40 am
 - Why Toxicology Needs the One Health Lens by Mohamed Ghorab and Abdel-Razak M. Kadry
 - Monday, March 11, 2024 @ 12 pm
 - Education-Career Development Session:
 - Navigating Career Transitions and Acclimation: The Art of a Scientific Career by Ahmed Abdelmoneim, Mohamed Ghorab, Abdel-Razak M. Kadry, and others
 - Tuesday, March 12, 2024 @ 3 pm

Get Involved! Join the ATA

Any member of the Society of Toxicology of any ethnic background who shares the same common interests as the ATA-SIG may become a member of the ATA upon payment of the required dues.

- Network with fellow Arab-origin toxicologists and toxicologists around the globe
- Get involved and participate in ATA [activities](#)
- Apply for exclusive awards recognizing scientific and professional excellence

To become a member of the ATA, follow this link.

<https://www.toxicology.org/groups/sig/ata/join-us.asp>

For more information, please reach out to ATA officers.
SOT.ATA.officers@gmail.com

Donations

Support the ATA

Help support the ATA's efforts in bringing the Arab Toxicologist community together. Your donation will help fund ATA awards, gatherings, and events, which will allow members to broaden their network and gain valuable interpersonal skills and opportunities to enhance their career. With your support, we can help the next generation of Arab Toxicologists succeed and thrive!

[Donate Now](#)

