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Environmental Exposures

* Environmental exposures alone or in combination with genetics can affect human health and cause
diseases.

* New chemical compounds are created and released into our environment every year. About 2,000 new
chemicals are introduced into commerce annually in the U.S., at a rate of about seven new chemicals a
day.

 Comprehensive toxicity assessment of all chemicals is an impossible task.

Toxic substances can enter the body in several ways.
Widespread contamination creates multiple exposure pathways. "IEG -
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Vrijheid M. The exposome: a new paradigm to study the impact of environment on health. Thorax. 2014 Sep 1;69(9):876-8.
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Computational Toxicology Methods

 Computational methods can be used to prioritize chemicals for in vivo
or in vitro toxicity study.

Other Machine Learning
methods: SVM, RF,
regression models, Deep

Learning, etc.
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Matrix Completion drug target prediction

Viatrix completion is the task of filling in the missing entries of a partially
observed matrix, which is equivalent to performing data imputation in statistics.

? | Missing entry - Observed entry

Observed matrix Completed matrix

Drug target interaction: physical interaction
Environmental chemical: any types of interactions, transcription level, post translational modifications, etc.




Coupled Matrix-Matrix Completion
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methods for predicting drug—target interactions. Briefings in bioinformatics. 2021 Mar;22(2):2161-71.



The Comparative Toxicogenomics Database

* A curated database that promotes understanding
about the effects of environmental chemicals on
human health.
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* 4,864 chemicals exposures
* 22,606 genes

* 201,375 known chemical-gene interaction

201,375/109,955,584 = 0.183%
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Chemical Similarities

* RDKit: Open-Source Cheminformatics Python package

[@

Open-Source Cheminformatics
and Machine Learning

 Two types of fingerprints were used to calculate chemical
similarities.

Morgan fingerprints Topological torsion fingerprints
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Gene Similarities

e GOSemSim: an R package for measuring semantic similarity among
GO terms and gene products.
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Performance Comparison

* MATLAB - CMF, GRMF, WGRMF

* CMMC - C++

CMF (Collaborative

Matrix Factorization)

GRMF (Graph-

Regularized Matrix
Factorization)

WKNKN (Weighted K

Nearest Knows Neighbors)

WGRMF (Weighted

Graph-Regularized
Matrix Factorization)
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Performance Comparison
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Case study - BPA with its analogs

Problem: how to get the target gene of novel chemicals without any biological activity data?

BPA BPB
CH;
Genes

CMMC

Chemicals
Chemicals
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Case study - BPA with its analogs

Problem: how to get the target gene of novel chemicals without any biological activity data?
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Case study - BPA with its analogs

Problem: how to get the target gene of novel chemicals without any biological activity data?
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GPERI: target gene of BPB

* G Protein-Coupled Estrogen Receptor 1: This gene encodes a multi-
pass membrane protein that localizes to the endoplasmic reticulum
and a member of the G-protein coupled receptor 1 family.

 CMMC predicted this gene as a top interactive gene only for BPB.

gcvnlaﬁcgmnﬁnt]uqu

Bisphenol AF and Bisphenol B Exert Higher Estrogenic Effects than
Bisphenol A via G Protein—CoupIed Estrogen Receptor Pathway

Lin-Ying Cao," * Xiao- Mm Ren,®" Chuan-Hai Li,"" Jing Zhang,'i' Wei-Ping Qin, " Yu Yang,” Bin Wan,"

and Liang-Hong Guo™ """

"State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese
Academy of Sciences, 18 Shuangging Road, Beijing 100085, P. R. China

:l:University of Chinese Academy of Sciences, Beijing 100039, P. R. China

...Six BPA analogues bound to GPER directly, with bisphenol AF (BPAF) and
bisphenol B (BPB) displaying much higher (~9-fold) binding affinity than BPA...
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Future plan - CTMC and CTTC

CMMC CTMC CTTC
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