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What We’ve Learned from the PGRN:

* Drug Metabolizing Enzymes
* Transporters

* Immune System

* Drug Receptors
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NAFLD Comprises a Spectrum of Pathologic
Severity

Healthy liver Steatosis NASH wifat NASH not fatty
(Cirrhosis)
- benign - steatosis - irreversible scarring
- reversible - inflammation - end-stage

- progressive fibrosis

NAFLD = Nonalcoholic Fatty Liver Disease
NASH = Nonalcoholic Steatohepatitis



A THE UNIVERSITY
. OF ARIZONA.

Increased Exposure in NASH
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Metabolism:
Pediatric P450 Activity In Vivo
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Hepatic Efflux Transporter Expression
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Cellular Localization of Hepatic MRP2

Normal NASH (not fatty)

Ref: Hardwick et al. DMD. 2011
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APAP Disposition
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APAP
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3 Mechanisms:
Hepatocyte Hopping

Hepatocyte
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3 Mechanisms:
Hepatocyte Hopping in NASH
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Altered PK In Hepatic Impairment

TRANSPORTER mediated

Known ADRs: ampicillin, benzypenicillin,
cefadroxil, cefalexin, cefazolin,”
cefbuperazon, cefmetazole, cefodizime,
cefoperazone, cefotaxime, cefpiramide,
ceftidoren, ceftizoxime, ceftriaxone,
ezetimibe, olmesartan, penicillamin,
pravastatin,

Predicted ADRs: adefovir, atrasentan,
avibactam, benlafamab mafoditin _
camptothecin, carboplatin, caspofungin,
cervistatin, chlopropamide, cisplatin,
digoxin, dinoprostone, eluxadoline,
empaglifozin, enalapril, epirubicin, _
eprosartan, fexofenadine, fimasartan, folic
acid, furosemide, gimatecan, glecapreuvir,
hydrochlorothiazide, hydroxyurea, =
lamivudine, levosalbutamol, liothyronine,
mercapturine, mesalazine, octreotide,
opicapone, oseltamivir, ouabaine,
oxaliplatine, pemetrexed, phalloidin,
pralatrexate, probenicid, raloxifene,
rapamycin, revefenacin, rifampicin,
sulfasalazine, sumatriptan, telmisartan,
temocapril, thioguanine, topotecan,
vasopressin

TRANSPORTER and METABOLISM

Known ADRs: atorvastatin, azithromycin,
canaglifozin, diclofenac, erythromycin,
fluvastatin,grazoprevir, mycophenolate
mofetil, paritaprevir, repaglinide,
rosuvastatin, simeprevir, Simvastatin,
valsartan,

Predicted ADRs: ambrisentan,
asunaprevir, axitinib, bosentan,
carbamazepin, clopidogrel, clotrimazole,
cobimetinib, cyclophophamide, cyclosporin,
darunavir, docetaxel, doxorubicin, elagolix,
ethinylestradiol, etoposide, fluorouracil,
g‘!eftlnlb, libenclamide, grepafloxacin,
Ifosfamide, imatinib, indinavir, irinotecan,
letermovir, liotrix, lopinavir, lovastatin,
methotrexate, mitoxantrone, morphine,
nateglinide, nelfinavir, paclitaxel, phenytoin,
pitavastatin, prasterone, remdesivir,
ritonavir, romidepsin, saquinavir, selexipag,
sulfinpyrazone, tacrolimus, talinolol,
tamoxiten, teniposide, tenofovir,
testosterone, torasemide, troglitazone,
ubrogepant, vinblastine, vincristine,
voxilaprevir, zidovudine
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RENAL Alterations Iin Liver Disease?

 Are there alterations to renal ADME

processes due to hepatic dysfunction

— Untargeted Proteomics - general expression
— Targeted Proteomics — drug transporters

* |dentify appropriate rodent model
— Extrapolation to human renal changes

* Predict toxicity
— ldentify potential toxicants due to renal ADME



Kidneys from Patients with NASH

Kidney Biopsies and Nephrectomies

n = 1238

*Available at Banner UMC
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Kidneys from Patients with NASH

Kidney Biopsies and Nephrectomies
*Available at Banner UMC

Patients with kidney and liver biopsies

*All Liver ICD9 and 10 Codes
*Between 2010—2017

*Transplanted kidney sample
«Samples not available

+Contradicting diagnostics or indistinguishable between sample
groups ]
«Liver biopsy or imaging results over 1 year before or after kidney

«Alcohol consumption
+Viral Hepatitis

NAFLD NASH HCV
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Kidneys from Patients with NASH

Kidney Biopsies and Nephrectomies
«Available at Banner UMC

Patients with kidney and liver biopsies

« All Liver ICD9 and 10 Codes
*Between 2010—2017

Missing or Altered Samples

* Transplanted kidney sample

Diagnostic Discrepancies and Timeline Issues

« Contradicting diagnostics or indistinguishable between sample groups n =
« Liver biopsy or imaging results over 1 year before or after kidney biopsy
Critical Information Missing

« Alcohol consumption
- Viral Hepatitis
« Liver imaging or biopsy results

Control NAFLD NASH HCV
n=7 n==6 n=5 n==6




Demographics

Control (n =7)] NAFLD (n =6)] NASH (n =5)| ALD (n =6) | HCV (n =6) | ALD/HCV (n =6)
Age (mean £ SD years) 35.4+19.4 45+20.9] 54.2+17.3] 46.2+10.7 57 +4.8 55.7 6.3
% Male 57% 50% 80% 33% 66% 50%
% Hispanic or Latino 14% 16% 40% 33% 50% 50%
% Current/Former Smoker 14% 17% 60% 50% 67% 83%
% Alcohol Consumption 0% 0% 0% 100% 16% 100%
% Obese (BMI >30 kg/m~2) 14% 100% 100% 33% 16% 0%
BMI (mean £ SD kg/m~2) 23.8+3.2 35.4+3.6 33.6+2.9] 29.7+5.0 26.3%4.9 27.8+2.1
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Global Transcriptomics

55 genes differentially expressed in conserved
directions across NASH, ALD, HCV, and ALD/HCV

Of the 55, immune regulators were highly

represented
* Alpha-2-macroglobulin (A2M)
e Clusterin (CLU)
+  Complement C1qC chain (C1QC)
- (D163
» Joining chain of multimeric IgA and IgM (JCHAIN)

Number of Genes

20000+

15000+

10000+

5000+
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Protein Quantification: Organic Anion
Transporters
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Protein Quantification: Organic Cation
Transporters
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Protein Quantification: ATP-binding Cassette
Transporters
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Protein Quantification: Bile-Acid Transporters

Protein Expression (pmol/mg protein)

Protein Expression (pmol/mg protein)
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Need for Renal Elimination

P Altered disposition in NASH

» Increased systemic concentrations

»  Underestimation of systemic expos
» Renally eliminated by OAT3/OAT4

»  Further increase systemic concent B

OAT3 NASH
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Method Flow




Method Flow

Rodent
Models

Abbreviation Species Strain Duration

Leptin Deficient with Methionine and Choline Deficient Diet db/db Mouse Leprdb/db 4 weeks
Fast Food Diet with Thioacetamide Injections FFDTH Mouse C57BL/6J 9 weeks
American Lifestyle Induced Obesity Syndrome ALIOS Mouse C57BL/6J 24 weeks
Control Diet Control Mouse | Mouse C57BL/6)J 6 weeks

Methionine and Choline Deficient Diet MCD Rat |[Sprague Dawley| 8 weeks
Atherogenic Diet Athero Rat |[Sprague Dawley| 8 weeks

Control Diet Control Rat Rat |Sprague Dawley| 8 weeks




Method Flow

Surrogate

Peptide
LC-MS/MS

Rodent
Models

Abbreviation Species Strain Duration

Leptin Deficient with Methionine and Choline Deficient Diet db/db Mouse Leprdb/db 4 weeks
Fast Food Diet with Thioacetamide Injections FFDTH Mouse C57BL/6J 9 weeks
American Lifestyle Induced Obesity Syndrome ALIOS Mouse C57BL/6J 24 weeks
Control Diet Control Mouse | Mouse C57BL/6)J 6 weeks

Methionine and Choline Deficient Diet MCD Rat |[Sprague Dawley| 8 weeks
Atherogenic Diet Athero Rat |[Sprague Dawley| 8 weeks

Control Diet Control Rat Rat |Sprague Dawley| 8 weeks




Method Flow

Surrogate Concordance
Peptide Analysis

Rodent LC-MS/MS
Models

Abbreviation Species Strain Duration

Leptin Deficient with Methionine and Choline Deficient Diet db/db Mouse Leprdb/db 4 weeks
Fast Food Diet with Thioacetamide Injections FFDTH Mouse C57BL/6J 9 weeks
American Lifestyle Induced Obesity Syndrome ALIOS Mouse C57BL/6J 24 weeks
Control Diet Control Mouse | Mouse C57BL/6)J 6 weeks

Methionine and Choline Deficient Diet MCD Rat |[Sprague Dawley| 8 weeks
Atherogenic Diet Athero Rat |[Sprague Dawley| 8 weeks

Control Diet Control Rat Rat [Sprague Dawley| 8 weeks




ALP (UIL)

Glucose (mg/dL)

Alkaline Phosphatase (ALP)
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Clinical Chemistry

Alanine Aminotransferase (ALT)

Blood Urea Nitrogen (BUN)
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Methionine and Choline Deficient Rats (MCD)

Glass’s A Rodent
3

0°A™S  @ent2 Concordance analysis of rodent models
®oar3 @o0AT2 2 against human renal drug transporters.
MDR1
® ® MRP2 ® PEPT2 Bl Basolateral Uptake
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M Basolateral Efflux
1 :
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Glass’s A Human URAT1 @®BCRP

@OCTN1 ocT2@ OATP1A21A1 @

MATE1 -1
RP1

MRP3®

® oCcTN2



Fast Food Diet with Thioacetamide Injection
Mice (FFDTH)

Glass’s A Rodent

NTCP@
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®ENT1 MATE1 OCT2 Concordance analysis of rodent models
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MCD

Glass's A Human

Rodent Model Concordance to Human NASH
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FFD/TH-Induced NASH affects Renal Organic Anion
Transporter Expression and Substrate Clearance

Organic Anion Substrate: Ochratoxin A —12.5 mg/kg bolus p.o.

<
c 1015 20+
"2 g ] -» Control — " -»- Control
o ] < 3 15- *
© O ] -~ FFD/TH 5 4 -~ FFD/TH
S 9 i D
= %‘t ANOVA: p=0.245 2 . 107 ANOVA: p=0.006
C 3 58 &
04 S 5
5310 E bfsi /
a ]
E T T T — h T T 0 T T T 1
0 36 912 24 48 72 0 20 40 60 80
Time (h) Time (h)
t1/2 Cmax/D AUCIast/D Vz/F CL/F Ae CLR/F
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FFD/TH-Induced NASH affects Renal Organic Anion
Transporter Expression and Substrate Clearance
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Knowledge Gaps to Fill

 Ochratoxin A

» Unethical controlled clinical study E = 2 00 o
Substrate for most OAT isoforms 3 £ S 0] ] -+
. . < e
* How does the organic anion system £ 2 3 1007 Hﬁ
clear Ochratoxin A? = 527 | e st
« Transepithelial transport via OAT4/5? 0o 2 4 6 8 0 6 12 18 24
- Other mechanisms (MRP2/4)? Time (h) = Healthy Time (h)
. -4~ NASH
« Adefovir
» OAT1/3 substrate, high renal
clearance

» Unknown affinity for other OATS,
including OAT4/5
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Conclusions

e Significant changes in hepatic ADME processes result
in plasma retention and urinary elimination of
substrates that may increase ADRs.

* Alterations in renal elimination pathways may
contribute to altered ADME and potential toxicity

* The full extent of NASH-induced alterations to renal
ADME processes is not fully known but could have a
profound impact on patient safety.
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