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• Human health risks are known to vary across and within 
populations.

• Current questions/challenges in risk assessment include:

1. How can we improve assessment of human interindividual 
variability?

2. How can we improving linkages between exposures that 
include multiple stressors and disease outcomes across the 
full range of human responses?

3. How can we determine uncertainty factors that are applicable 
to specific endpoints and exposures and that capture 
interindividual variability?

Background: 
Interindividual Variability in Risk Assessment

How can machine 
learning help us 

understand interindividual 
variability?
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Big (and Smaller!) Data
Technological advances have made measuring molecular signatures in experimental samples more 
feasible and affordable.

Pros:
• Increased accessibility of measuring a wide range of molecular signatures
• Opportunity for broader investigation of the effects of toxicants
• Higher sensitivity in capturing molecular signatures
• Ability to obtain more data from a single sample

Challenges:
• Sufficiently powering studies
• Distilling meaningful biological conclusions AND communicating them clearly
• Data science training 
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Outline of Presentation
1. Share examples of recent efforts leveraging supervised and unsupervised machine 

learning to understand key biological mechanisms of inhaled toxicants in human clinical 
studies.

2. Highlight a study leveraging an organotypic in vitro co-culture model of the respiratory 
system to understand variables underlying interindividual variability in response to acrolein. 

3. Discuss major takeaways, upcoming data science training efforts, and future studies. 
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Example Studies
1. Are there overall differences in human respiratory protein profiles in users of different types 

of e-cigarette devices?

2. Are human respiratory protein profiles in e-cigarette users similar to those found in people 
with chronic obstructive pulmonary disease (COPD)?
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What are e-cigarettes?

E-cigarettes heat and aerosolize an e-liquid, 
allowing users to inhale nicotine and other 
chemicals.

E-liquids typically contain:
• Nicotine or Nicotine Salts, 0-7% (0-70 mg/mL)
• Flavoring Chemicals
• Propylene Glycol (throat hit)
• Vegetable Glycerin (sweetness, cloud)

E-cigarettes were originally touted as a “safer” 
alternative to cigarettes but are used by both 
former cigarette smokers and nonsmokers.

Image: Talih 2016 Aerosol Science and Technology 
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E-Cigarette Device Evolution

Previous (3rd)  
Generation E-Cigs

Pod and 
Disposable E-Cigs

(4th Gen)

Freebase Nicotine
(pH ~8)

Nicotine Salts
(pH ~4-6)

User control over settings, 
can be high power

Fewer settings, 
lower power

Puffing patterns? User population?

e.g. lactic, benzoic, and 
levulinic acids

Image: Harvanko et al 2020 Nicotine Tob Res

Constant evolution of e-cigarette devices is a major challenge in the field of e-cigarette toxicology, particularly with popular devices such 
as JUUL and disposables.

What biomarkers are altered in 4th generation e-
cigarette users?
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Study Design
Dr. Neil Alexis

Demographic Summary:
• n = 21-28 participants per group
• 4th generation e-cigarette users were significantly younger
• Each group had a mixture of male and female participants, but ratio was not always even

Heather Wells Dr. Julia Rager Alexis PaytonDr. Ilona Jaspers

Hickman et al. 2022 American Journal of Respiratory and Critical Care Medicine
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Soluble Mediator Expression is Significantly Decreased in 4th 
Generation E-Cig Users

Soluble mediators that were significantly different between exposure groups after adjusting for age, sex, and race differences between exposure groups. Results are presented as mean ± standard error of log2 transformed 
mediator concentrations. * p < 0.05, ** p < 0.01, *** p < 0.001 using ANCOVA followed by Dunnett’s (comparisons with NS/NV) and Tukey’s (3rd v. 4th Gen) post-hoc tests. NS/NV = non-smoker/non-vaper, SM = smoker. 

n = 12 
mediators 

significant for 
exposure group 

variable

Hickman et al. 2022 American Journal of Respiratory and Critical Care Medicine 10



Machine learning demonstrates best separation for 4th generation e-cigarette 
users

4th Gen 3rd Gen NS/NV SM

IL10

MIP1a

MMP9

Eotaxin3

IL6

TARC

VEGFD

MPO

Tie2

−1

−0.5

0

0.5

1

Variable Selection
Machine Learning Model Performance

(Best Subsets Regression)

Hickman et al. 2022 American Journal of Respiratory and Critical Care Medicine
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Conclusions

Suggestive of dysregulated immune homeostasis in the form of overall immune suppression in 4th 
generation e-cigarette users, which could result in impaired response to infection or vaccination

Observed notable interindividual variability between participants.

Hickman et al. 2022 American Journal of Respiratory and Critical Care Medicine

12



Example Studies
1. Are there overall differences in human respiratory protein profiles in users of different types 

of e-cigarette devices? 

2. Are human respiratory protein profiles in e-cigarette users similar to those found in people 
with chronic obstructive pulmonary disease (COPD)?

13



Example Studies
1. Are there overall differences in human respiratory protein profiles in users of different types 

of e-cigarette devices? 

2. Are human respiratory protein profiles in e-cigarette users similar to those found in people 
with chronic obstructive pulmonary disease (COPD)?

14



Background on COPD
• Chronic obstructive pulmonary disease (COPD) is a highly prevalent, progressive condition marked by 

an altered airway inflammatory and immune milieu that encompasses emphysema and chronic 
bronchitis. 

Image: https://www.vywwc.com/blog/when-to-visit-urgent-care-for-copd-recognizing-warning-signs/

• In industrialized nations, cigarette smoking is the 
primary risk factor for COPD, and smoking is 
estimated to account for 8 in 10 COPD deaths.

• E-cig use has been associated with chronic 
bronchitis, increased airway proteases, 
inflammation, and altered immune markers in 
sputum, which are also found in COPD.

Do e-cig users have sputum soluble 
mediator profiles that resemble 

specific stages of COPD?
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Study Design
Dr. Neil Alexis Dr. Julia Rager

GOLD Stage Description Lung Function

0 Pre-COPD; individuals with respiratory and/or structural or 
physiological abnormalities without airflow obstruction

1/2 Mild COPD (FEV1 ≥ 80% predicted), Moderate COPD ( 50% 
≤ FEV1 < 80% predicted)

3 Severe COPD (30% ≤ FEV1 < 50%)

SPIROMICS: SubPopulations and InteRmediate Outcome Measures In COPD Study

GOLD: Global Initiative for Chronic Obstructive Lung Disease
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Study Design
Dr. Neil Alexis Dr. Julia RagerSPIROMICS: SubPopulations and InteRmediate Outcome Measures In COPD Study

GOLD: Global Initiative for Chronic Obstructive Lung Disease

Demographic Summary:
• n = 25-29 participants per group
• Balanced male/female in each group
• Balanced current smokers vs. non-smokers in each group
• Older on average than e-cig study cohort
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Similarity in Soluble Mediator Profiles Between Groups:
Hierarchical Clustering

Hickman et al. manuscript submitted to Am J Resp Crit Care Med

All Mediators Together 
(Group Averages)

All Mediators Together 
(Individual Participants)

GOLD 3 4th Gen EC 3rd Gen EC Pre−COPD Control GOLD 1/2

IL10
IL8
MIP1a
MMP9
IL1B
TNFa
Eotaxin
IL12p70
Eotaxin3
IL1a
IL12p40
CRP
IP10
MIP1B
sICAM1
TARC
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sVCAM1
MCP1
MPO
MMP2
NE

−1

0

1
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Similarity in Soluble Mediator Profiles Between Groups:
Hierarchical Clustering

Hickman et al. manuscript submitted to Am J Resp Crit Care Med

Separated by Biological Function

“Semi-supervised machine learning”

+
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Similarity in Soluble Mediator Profiles Between Groups:
Mahalanobis Distance

Mahalanobis distance is 
calculated between the 
multivariate mean and the 
datapoints after rescaling 
(using eigenvectors and 
eigenvalues) to remove 
covariance

Distance metrics such as 
Mahalanobis and Jaccard 
can serve as 
complementary 
approaches to machine 
learning.

Hickman et al. manuscript submitted to Am J Resp Crit Care Med

A
Relative Similarity to 3rd Gen E-Cig Users

B
Relative Similarity to 4th Gen E-Cig Users
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Conclusions

Taken together, our results demonstrate partial overlap between e-cig user and COPD soluble mediator 
profiles, warranting further investigation into the relationship between e-cigarette use and airway disease.

Continued to observe notable interindividual variability between participants.
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Outline of Presentation
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Background: 
Acrolein & Respiratory NAMs
• Acrolein is a ubiquitous volatile aldehyde that is emitted 

from the combustion of fossil fuels, tobacco, wood, and 
plastic.

• Exposure to acrolein is associated with irritation 
throughout the respiratory tract, pulmonary edema, and 
dysregulation of immune responses. 

• Primary human bronchial epithelial cell + fibroblast co-
cultures represent sophisticated organotypic in vitro 
models that can inform interindividual variability.

Moghe et al 2015 DOI: 10.1093/toxsci/kfu233
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Cell Culture Model & Exposure
Dr. Julia Rager Dr. Shaun McCullough Dr. Alysha Simmons

(UNC)(RTI International)

Manuscript in preparation
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1. Significant interindividual variability between physical characteristics of pHBEC cultures.

2. Significant interindividual variability in responsivity of co-culture system to acrolein exposures.

3. Significant increase in cytokine/growth factor production alongside decreased barrier integrity with higher 
doses of acrolein. 

Initial Observations

Manuscript in preparation
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H&E

Alcain Blue 
PAS (Mucins)

Can we leverage benchmark dose-response modeling and machine learning to assess 
interindividual variability in response to acrolein?



Computational Modeling

Manuscript in preparation
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Benchmark dose-response modeling is 
an established tool to inform human 

health risk calculations that can 
leverage both phenotypic and 

molecular-level response signatures.



BMDs Were Lower and More Variable When Analyzing 
Trends on a Per-Donor Basis
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Benchmark Doses Vary by Donor and Cluster by Sex for Cytokines 
and Secreted Growth Factors
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Manuscript in preparation
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Potential Sex-Based Differences in BMD Model 
Parameters Were Identified Using K-Means Clustering
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Manuscript in preparation
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Conclusions

This study is impactful because it is among the first to combine in vitro primary co-culture models with 
advanced computational modeling to expand human response variability assessments in new approach 

methods (NAMs)-based risk assessment.

We detected factors underlying interindividual variability using machine learning.

Manuscript in preparation
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Outline of Presentation
1. Share examples of recent efforts leveraging supervised and unsupervised machine 

learning to understand key biological mechanisms of inhaled toxicants in human clinical 
studies.

2. Highlight a study leveraging an organotypic in vitro co-culture model of the respiratory 
system to understand variables underlying interindividual variability in response to acrolein. 

3. Discuss major takeaways, upcoming data science training efforts, and future studies. 

31



Overarching Conclusions
Themes across all projects:
• Human respiratory toxicology data
• High interindividual variability
• Relatively small N and number of 

endpoints
• Goal of quantifying endpoints as a 

whole

Supervised and unsupervised machine 
learning represent methods that can aid 
in understanding key biological 
mechanisms of inhaled toxicants and 
interindividual variability in response to 
inhaled toxicant exposure. 

32

Ongoing challenges:
• Sample size
• Human variability
• Batch effects
• Covariates
• Data pre-processing 
• Selection and interpretation of ML
• Biases in analysis
• Data analysis training



Training the Next Generation of Toxicologists
• inTelligence And Machine lEarning (TAME) Toolkit, promoting didactic data generation, 

management, and analysis methods to “TAME” data in environmental health studies
• Development led by Dr. Julia Rager

https://uncsrp.github.io/Data-Analysis-Training-Modules/ 

Scan to be 
directed to 
TAME Site:
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TAME is a Publicly Available, Online Bookdown Site

34
TAME 2.0 Coming Soon!



TAME 2.0 Chapter 4: 
Converting Wet Lab Data Into Dry Lab Analyses

Experimental Design Data Processing & 
Transformation

Basic Statistical Testing & 
Improved Visualizations
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TAME 2.0 Chapter 5, Module 1: 
Introduction to Machine Learning and Artificial Intelligence

• General historical context and taxonomy 
of modern AI/ML, including ChatGPT!

• Application of machine learning in 
environmental health science

• Why do we need machine learning?
• Machine learning vs. traditional statistical 

methods
• Predictive modeling in the context of 

environmental health science
• Additional applications of machine 

learning in environmental health science

• Scripted examples of supervised and 
unsupervised machine learning in the 
following modules

Alexis PaytonDr. David Reif

36



Upcoming Research
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“Mechanisms of wildfire smoke toxicity and susceptibility involving 
extracellular vesicles in humans”

Goal: Determine differential responses to wildfire 
smoke exposure in asthmatics and non-asthmatics 

through the novel integration of EV signatures 
obtained from epithelial in vitro studies with clinical 

human in vivo studies on biomass smoke exposures.

We hypothesize that the hypoxia inducible factor 1 
subunit alpha (HIF-1⍺) pathway mediates 

differential inflammatory responsiveness to 
biomass smoke exposure between asthmatics vs 
non-asthmatics through extracellular vesicle (EV)-

mediated communication.
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Thank you! Questions?
Contact: ehickman@email.unc.edu
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