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Background:
Interindividual Variability in Risk Assessment

* Human health risks are known to vary across and within
populations.

» Current questions/challenges in risk assessment include:

1. How can we improve assessment of human interindividual
variability?

2. How can we improving linkages between exposures that
include multiple stressors and disease outcomes across the

full range of human responses? How can machine
learning help us
3. How can we determine uncertainty factors that are applicable understand interindividual
to specific endpoints and exposures and that capture variability?

interindividual variability?

Rusyn, Chiu, Wright 2022; Regulatory Toxicology and Pharmacology; DOI: 10.1016/j.yrtph.2022.105197



Big (and Smaller!) Data

Technological advances have made measuring molecular signatures in experimental samples more

feasible and affordable.

Pros:

 Increased accessibility of measuring a wide range of molecular signatures
« Opportunity for broader investigation of the effects of toxicants

» Higher sensitivity in capturing molecular signatures

« Ability to obtain more data from a single sample

Challenges:
« Sufficiently powering studies
« Distilling meaningful biological conclusions AND communicating them clearly

« Data science training
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Outline of Presentation

1. Share examples of recent efforts leveraging supervised and unsupervised machine
learning to understand key biological mechanisms of inhaled toxicants in human clinical
studies.

2. Highlight a study leveraging an organotypic in vitro co-culture model of the respiratory
system to understand variables underlying interindividual variability in response to acrolein.

3. Discuss major takeaways, upcoming data science training efforts, and future studies.




Outline of Presentation

1. Share examples of recent efforts leveraging supervised and unsupervised machine
learning to understand key biological mechanisms of inhaled toxicants in human clinical
studies.




Example Studies

1. Are there overall differences in human respiratory protein profiles in users of different types
of e-cigarette devices?




What are e-cigarettes?

E-cigarettes heat and aerosolize an e-liquid,
allowing users to inhale nicotine and other

chemicals.

E-cigarettes were originally touted as a “safer”
alternative to cigarettes but are used by both
former cigarette smokers and nonsmokers.

E-liquids typically contain:

» Nicotine or Nicotine Salts, 0-7% (0-70 mg/mL)
* Flavoring Chemicals

* Propylene Glycol (throat hit)

* Vegetable Glycerin (sweetness, cloud)
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E-Cigarette Device Evolution

Constant evolution of e-cigarette devices is a major challenge in the field of e-cigarette toxicology, particularly with popular devices such
as JUUL and disposables.

' Free-base Nicotine Nicotine Salt
Previous (3) ; Pod and
Generation E-Cigs Disposable E-Cigs
i (4t Gen)
Freebase Nicotine Nicotine Salts // e.g. Igi}lljl:i’nti): ra]i?c;cs: e
(pH ~8) (pH ~4-6)
User control over settings, | Fewer settings,
can be high power lower power What biomarkers are altered in 4" generation e-
cigarette users?
Puffing patterns? User population?




Study Design

Dr. llona Jaspers Dr. Neil Alexis Heather Wells Dr. Julia Rager  Alexis Payton

B Cell Differentials

Nonsmokers ‘ Induced
(NS/NV) - Sputum / /‘,

Smokers @ —— e

s £599
?3: Soluble Immune

3rd Gen "' = @’ — Mediators — Variable by Variable Statistical Testing
E-Cig Users -il

(ELISA & Mesoscale Discovery) (Kruskal-Wallis, ANCOVA)
4th Gen

E-Cig Users

Multiclass Predictive Modeling
(Multinomial Logistic Regression (MLR),
Quadratic Discriminant Analysis (QDA))

—_— n = 45 mediators

Demographic Summary:

* n=21-28 participants per group

» 4% generation e-cigarette users were significantly younger

» Each group had a mixture of male and female participants, but ratio was not always even

Hickman et al. 2022 American Journal of Respiratory and Critical Care Medicine



Soluble Mediator Expression is Significantly Decreased in 4th
Generation E-Cig Users
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Soluble mediators that were significantly different between exposure groups after adjusting for age, sex, and race differences between exposure groups. Results are presented as mean + standard error of log2 transformeol
mediator concentrations. *p < 0.05, **p < 0.01, *** p < 0.001 using ANCOVA followed by Dunnett’s (comparisons with NS/NV) and Tukey’s (3rd v. 4th Gen) post-hoc tests. NS/NV = non-smoker/non-vaper, SM = smoker.




Machine learning demonstrates best separation for 4" generation e-cigarette

users
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Conclusions

Cell Differentials Soluble Mediators
E 2% | SICAMT, :
: b Lmphooytes @ | __» | %0 ¥ SVCAMI, CRP :
: , °es . IFN-y, MCP-1, )
: T Bronchial N ° %e°°  uteroglobin, :
: Epithelial Cells l °s® VEGF :
Machine Learning
../« Best separation of
" «* 7 4th gen e-cig users "

Suggestive of dysregulated immune homeostasis in the form of overall immune suppression in 4t
generation e-cigarette users, which could result in impaired response to infection or vaccination

Observed notable interindividual variability between participants.

Hickman et al. 2022 American Journal of Respiratory and Critical Care Medicine



Example Studies

1. Are there overall differences in human respiratory protein profiles in users of different types
of e-cigarette devices?
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Example Studies

2. Are human respiratory protein profiles in e-cigarette users similar to those found in people
with chronic obstructive pulmonary disease (COPD)?
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Background on COPD

« Chronic obstructive pulmonary disease (COPD) is a highly prevalent, progressive condition marked by

an altered airway inflammatory and immune milieu that encompasses emphysema and chronic
bronchitis.

* In industrialized nations, cigarette smoking is the
primary risk factor for COPD, and smoking is o Health | COPD
estimated to account for 8 in 10 COPD deaths. >

« E-cig use has been associated with chronic
bronchitis, increased airway proteases,
inflammation, and altered immune markers in
sputum, which are also found in COPD.

Alveolv®

Do e-cig users have sputum soluble
mediator profiles that resemble
specific stages of COPD?

Image: https://www.vywwc.com/blog/when-to-visit-urgent-care-for-copd-recognizing-warning-signs/



|
Study Design  SEIROMICS
SPIROMICS: SubPopulations and InteRmediate Outcome Measures In COPD Study Dr. Neil Alexis - Dr. Julia Rager
. ] Cell Differentials
Control Induced
- Sputum / &
Stratum 2 & . Variable by Variable Statistical Testing
(GOLD 0) - — (Kruskal-Wallis, ANCOVA)
—> Soluble Immune
Stratum 3 ‘ > Mediators »  Correlation Anal
(GOLD 1/2) - (ELISA & Mesoscale Discovery) + E-Cig Study > orrelation Analyses
Data Distance Metrics
S(J[GrgiuD”;f @ v S (Jaccard, Mahalanobis)
_ 0 =27 mediators Unsupervised Machine Learning
l *Based on findings in e-cig study (Hierarchical Clustering)
and biomarkers specific to COPD

Pre-COPD; individuals with respiratory and/or structural or
physiological abnormalities without airflow obstruction

12 Mild COPD (FEV1 = 80% predicted), Moderate COPD ( 50% ﬁ
< FEV1 < 80% predicted)

3 Severe COPD (30% < FEV1 < 50%) g

GOLD: Global Initiative for Chronic Obstructive Lung Disease
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| |
Study Design SEIR@IICS
SPIROMICS: SubPopulations and InteRmediate Outcome Measures In COPD Study Dr. Neil Alexis - Dr. Julia Rager
. ] Cell Differentials
Control Induced
- Sputum / ,
Stratum 2 & Variable by Variable Statistical Testing
(GOLD 0) .. - — (Kruskal-Wallis, ANCOVA)
—> Soluble Immune
Stratum 3 ‘ > Mediators > Correlation Analyses
(GOLD 1/2) - (ELISA & Mesoscale Discovery) + E-Cig Study
Stratum 4 Data Distance Metrics
(GO LuD 3) (Jaccard, Mahalanobis)
Unsupervised Machine Learning

— n = 27 mediators

l *Based on findings in e-cig study (Hierarchical Clustering)

and biomarkers specific to COPD

Demographic Summary:

« n = 25-29 participants per group

« Balanced male/female in each group

« Balanced current smokers vs. non-smokers in each group
« Older on average than e-cig study cohort

GOLD: Global Initiative for Chronic Obstructive Lung Disease
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Similarity in Soluble Mediator Profiles Between Groups:

Hierarchical Clustering
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Hickman et al. manuscript submitted to Am J Resp Crit Care Med
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Similarity in Soluble Mediator Profiles Between Groups:

Hierarchical Clustering

All Mediators Together
(Group Averages)
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Hickman et al. manuscript submitted to Am J Resp Crit Care Med
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“Semi-supervised machine learning”
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Similarity in Soluble Mediator Profiles Between Groups:
Mahalanobis Distance

A
Relative Similarity to 3@ Gen E-Cig Users
MahalanObls dIStance IS All Mediators Inflammatory Chemotactic Proteases/Enzymes
calculated between the
. ) Control ® 0.039 @ 0.103 @® 0.062 e 0.02
multivariate mean and the
. . 4th Gen EC @ 0.069 @ 0155 e 0.013 ® 0.034
datapoints after rescaling
(using eigenvectors and Pre-COPD @® 0.117 @ 0.169 ® 0.031 @ 0.076
eigenvalues) to remove GOLD 1/2 ® 0.032 @ 0.183 ® 0.031 « 0.007
covariance GOLD3
. . B Relative Similarity to 4" Gen E-Cig Users
Distance metrics such as
MahalanObiS and Jaccard All Mediators Inflammatory Chemotactic Proteases/Enzymes
can serve as Control @ 013 ® 0.044 e 0.004 @ 0.195
complementary _ 4th Gen EC ® 0.069 @ 0.155 e 0013 ® 0034
apprqaches to machine Pre-COPD @ 0359 ® 0073 * 0.001 @o:a
learning. GOLD 1/2 @ 0.154 @® 0.082 e 0.001 @ o2
GOLD 3

Hickman et al. manuscript submitted to Am J Resp Crit Care Med



Conclusions

Machine Learning

. ]

. L Clustering of 3rd gen
1 e-cig users with

: participants with COPD
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: ' recommendations I Similarity between 4th gen :
' ". improved cluster e-cig users and participants |
: separation i at risk of developing COPD '

Taken together, our results demonstrate partial overlap between e-cig user and COPD soluble mediator
profiles, warranting further investigation into the relationship between e-cigarette use and airway disease.

Continued to observe notable interindividual variability between participants.




Outline of Presentation

2. Highlight a study leveraging an organotypic in vitro co-culture model of the respiratory
system to understand variables underlying interindividual variability in response to acrolein.
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Background:

Acrolein & Respiratory NAMs

« Acrolein is a ubiquitous volatile aldehyde that is emitted
from the combustion of fossil fuels, tobacco, wood, and
plastic.

« Exposure to acrolein is associated with irritation
throughout the respiratory tract, pulmonary edema, and
dysregulation of immune responses.

* Primary human bronchial epithelial cell + fibroblast co-
cultures represent sophisticated organotypic in vitro
models that can inform interindividual variability.

Moghe et al 2015 DOI: 10.1093/toxsci/kfu233

SOURCES
Lipid Peroxidation Fried food Automobile Exhaust
Anti-Cancer Drugs Alcoholic beverages Cigarette Smoke
Polyamines Charred Meat Industrial Waste
Threonine 1 Forest Fires

N

Protein and
DNA Adducts

Acrylic acids
Glyceraldehyde

| HPMA | «=[ oPMA |=> [cEMA |

Malonic acid

METABOLITES
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Cell Culture Model & Exposure

Primary HBEC Differentiation

=Y

| |

- ‘
\ I
iz |
\essammesn) | 24 days | N@AY)

\EERFEREER

Primary Fibroblast Culture

Manuscript in preparation

Co-Culture
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Dr. Shaun McCullough Dr. Alysha Simmons
(RTI International) (UNC)

Dr. Julia Rager

Endpoint Collection

I Apical Wash Cytokines/Growth Factors
/ (IL-10, IL-1B, IL-6, IL-8, TNF-a)
_—» Phenotypic Endpoints
(Barrier integrity, ciliary function, mucin
production)

» Basolateral Media Cytokines/Growth Factors
(IL-10, IL-1B, IL-6, IL-8, TNF-a, VEGF)
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Initial Observations

1. Significant interindividual variability between physical characteristics of pHBEC cultures.
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2. Significant interindividual variability in responsivity of co-culture system to acrolein exposures.

3. Significant increase in cytokine/growth factor production alongside decreased barrier integrity with higher
doses of acrolein.

Can we leverage benchmark dose-response modeling and machine learning to assess
interindividual variability in response to acrolein?

Manuscript in preparation



Computational Modeling

Manuscript in preparation
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BMDs Were Lower and More Variable When Analyzing

Trends on a Per-Donor Basis
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Benchmark Doses Vary by Donor and Cluster by Sex for Cytokines
and Secreted Growth Factors

’
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Potential Sex-Based Differences in BMD Model
Parameters Were Identified Using K-Means Clustering

K-means Clusters
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23P
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Cluster 3

Cluster 1 Cluster 2 P-value
(N=3) (N=5) (N=6)
Sex
Female 0 (0%) 1 (20.0%) 4 (66.7%) 0.115
Male 3 (100%) 4 (80.0%) 2 (33.3%)

Age
Mean (SD)

Median [Min, Max]

26.0 (15.7)
19.0 [15.0, 44.0]

41.0 (17.6)
46.0 [13.0, 58.0]

28.4 (33.3) 0.652
13.5[0.330, 91.0]

BMD (Model Avg)

2

Input: Power curve model fit parameters
for cytokine and growth factor data

Manuscript in preparation

X

0 i
Dim1 (54.9%)

Mean (SD) 2.90 (0.404) 4.85 (2.74) 3.08 (0.637) 0.203
Median [Min, Max]  2.79 [2.56, 3.35] 3.97 [3.21, 9.69] 3.05 [2.27, 3.86]

BMD (Power Model)
Mean (SD) 2.93 (0.434) 4.87 (2.73) 3.09 (0.640) 0.202
Median [Min, Max]  2.79 [2.57, 3.41] 4.00 [3.22, 9.70] 3.07 [2.28, 3.88]
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Conclusions

Methods Clustering
Organotypic model o ® Sex-based
@®  \ith primary human a differences in
‘ cells successfully — ) cytokine and
o able to model e O O secreted growth
al interindividual = - = factor response
variability i i o revealed

Endpoints

Phenotypic endpoints
e did not fully capture
So . differences between
S donors

This study is impactful because it is among the first to combine in vitro primary co-culture models with
advanced computational modeling to expand human response variability assessments in new approach
methods (NAMs)-based risk assessment.

We detected factors underlying interindividual variability using machine learning.

Manuscript in preparation



Outline of Presentation

3. Discuss major takeaways, upcoming data science training efforts, and future studies.
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Overarching Conclusions

Themes across all projects:
 Human respiratory toxicology data
« High interindividual variability

« Relatively small N and number of
endpoints

« Goal of quantifying endpoints as a
whole

Supervised and unsupervised machine
learning represent methods that can aid
in understanding key biological
mechanisms of inhaled toxicants and
interindividual variability in response to
inhaled toxicant exposure.

Onqgoing challenges:

« Sample size

* Human variability

« Batch effects

« Covariates

« Data pre-processing

« Selection and interpretation of ML
« Biases in analysis

- Data analysis training
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Training the Next Generation of Toxicologists

 inTelligence And Machine IEarning (TAME) Toolkit, promoting didactic data generation,
management, and analysis methods to “TAME” data in environmental health studies

« Development led by Dr. Julia Rager

TECHNOLOGY AND CODE article

Front. Toxicol., 22 June 2022
Sec. Computational Toxicology and Computational Toxicology: Data Pipelines and
Informatics Analysis

This article is part of the Research Topic

Volume 4 - 2022 | View all 4 Articles >
https://doi.org/10.3389/ftox.2022.893924

Development of the InTelligence And
Machine LEarning (TAME) Toolkit for
Introductory Data Science, Chemical-
Biological Analyses, Predictive
Modeling, and Database Mining for
Environmental Health Research

‘ Kyle Roell* Lauren E. Kovall2* Rebecca Boyles® - Grace Patlewicz®
Caroline Ring* Cynthia V. Rider® Cavin Ward-Caviness®
ﬁ" David M. Reif” llona Jaspers'28.2.10 Rebecca C. Fryl28

‘ Julia E. Rager’-289%

0

TAME Toolkit
Preface

CHAPTER 1 INTRODUCTORY
DATA SCIENCE

1.1 Introduction to Coding in R

1.2 Data Organization Basics

1.3 Finding and Visualizing Data Trends
1.4 High-Dimensional Data Visualizations

1.5 FAIR Data Management Practices

CHAPTER 2 CHEMICAL-
BIOLOGICAL ANALYSES

AND PREDICTIVE MODELING

2.1 Dose-Response Modeling

2.2 Machine Learning and Predictive M..
2.3 Mixtures Analysis

2.4 -Omics Analyses and Systems Biol...

2.5 Toxicokinetic Modeling

2.6 Read-Across Toxicity Predictions

CHAPTER 3 ENVIRONMENTAL
HEALTH DATABASE MINING

3.1 Comparative Toxicogenomics Data...
3.2 Gene Expression Omnibus

3.3 Database Integration: Air Quality St.

ADDITIONAL RESOURCES

Resources

Published with bookdown

The inTelligence And Machine IEarning (TAME)
Toolkit for Introductory Data Science, Chemical-
Biological Analyses, Predictive Modeling, and
Database Mining for Environmental Health
Research

Kyle Roell, Lauren Koval, Rebecca Boyles, Grace Patlewicz, Caroline Ring, Cynthia Rider, Cavin Ward-
Caviness, David M. Reif, llona Jaspers, Rebecca C. Fry, and Julia E. Rager

Preface

Background

Research in exposure science, toxicology, and environmental health is becoming increasingly reliant
upon data science and computational methods that can more efficiently extract information from
complex datasets. These methods can be leveraged to better identify relationships between exposures
to chemicals in the environment and human disease outcomes. Still, there remains a critical gap

surrounding the training of researchers on these in silico methods.

Objectives

We aimed to address this critical gap by developing the inTelligence And Machine |Earning (TAME)
Toolkit, promoting trainee-driven data generation, management, and analysis methods to “TAME” data in
environmental health studies. This toolkit encompasses training modules, organized as chapters within
this Github Bookdown site. All underlying code (in RMarkdown), input files, and imported graphics for
these modules can be found at the parent UNC-SRP Github Page.

Module Development Overview

Training modules were developed to provide applications-driven examples of data organization and

analysis methods that can be used to address environmental health questions. Target audiences for

https.://uncsrp.github.io/Data-Analysis-Training-Modules/

Scan to be
directed to
TAME Site:
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TAME is a Publicly Available, Online Bookdown Site
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Preface

CHAPTER 1 INTRODUCTORY
DATA SCIENCE

1.1 Introduction to Coding in R
1.2 Data Organization Basics

1.8 Finding and Visualizing Data Trends

1.4 High-Dimensional Data Visualizations

1.5 FAIR Data Management Practices

CHAPTER 2 CHEMICAL-
BIOLOGICAL ANALYSES
AND PREDICTIVE MODELING

2.1 Dose-Response Modeling

2.2 Machine Learning and Predictive M...

2.3 Mixtures Analysis

2.4 -Omics Analyses and Systems Biol...

The Field of “-Omics”
Transcriptomics
Introduction to Training Module

Transcriptomics Data QA/QC

Statistical Analysis of Gene Expressi...

MA Plots
Volcano Plots
Pathway Enrichment Analysis

Concluding Remarks

2.4 -Omics Analyses and Systems Biology

This training module was developed by Lauren Koval, Dr. Kyle Roell, and Dr. Julia E. Rager

Fall 2021

The Field of “~-Omics”

The field of “-omics” has rapidly evolved since its inception in the mid-1990’s, initiated from information
obtained through sequencing of the human genome (see the Human Genome Project) as well as the
advent of high-content technologies. High-content technologies have allowed the rapid and economical

assessment of genome-wide, or ‘omics’-based, endpoints.

Traditional molecular biology techniques typically evaluate the function(s) of individual genes and gene
products. Omics-based methods, on the other hand, utilize non-targeted methods to identify many to all
genes or gene products in a given environmental/biological sample. These non-targeted approaches
allow for the unbiased investigation of potentially unknown or understudied molecular mediators
involved in regulating cell health and disease. These molecular profiles have the potential of being

altered in response to toxicant exposures and/or during disease initiation/progression.

To further understand the molecular consequences of -omics-based alterations, molecules can be
overlaid onto molecular networks to uncover biological pathways and molecular functions that are
perturbed at the systems biology level. An overview of these generally methods, starting with high-
content technologies and ending of systems biology, is provided in the below figure (created with
BioRender.com).

High-content technologies Data science & computational o
measure responses across the approaches to identify patterns Wo':;f "': m:: d"w:.m
genome/epigenome within -omics datasets netwo

a7 @ O
Tel ° % L2 K@

e
@ 0. @O
@... o

Technologies can include:
high-throughput PCR, microarrays,
sequencing technologies, and others

Example group comparison:
O Unexposed samples
@ Exposed samples

Result: Systems level understanding
of consequences resulting from
-omic disruptions

& &
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1.4 High-Dimensional Data Visualizations

1.5 FAIR Data Management Practices

CHAPTER 2 CHEMICAL-

BIOLOGICAL ANALYSES

AND PREDICTIVE MODELING

2.1 Dose-Response Modeling

2.2 Machine Learning and Predictive M...

2.8 Mixtures Analysis

2.4 -Omics Analyses and Systems Biol...
The Field of “-Omics”
Transcriptomics
Introduction to Training Module
Transcriptomics Data QA/QC
Statistical Analysis of Gene Expressi...
MA Plots
Volcano Plots
Pathway Enrichment Analysis
Concluding Remarks

2.5 Toxicokinetic Modeling

pheatmap(scale(countdata_for_clustering), main="Hierarchical Clustering",
cluster_rows=TRUE, cluster_cols = FALSE,

fontsize_col = 7, treeheight_row = 60, show_colnames = FALSE)

Hierarchical Clustering
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Like the PCA findings, heirarchical clustering demonstrated an overall lack of potential sample outliers
because there were no obvious sample(s) that grouped separately from the rest along the clustering
dendograms.

Therefore, neither approach points to outliers that should be removed in this analysis.

With this, we can answer i Health Q

2: When preparing
transcriptomics data for statistical analyses, what are three common data filtering steps
that are completed during the data QA/QC process?

Answer: (1) Background filter to remove genes that are universally lowly expressed; (2)

Sample filter to remove samples that may be not have any detectable mRNA; (3)
Sample outlier filter to remove samples with underlying data distributions outside of the

overall, collective dataset.

TAME 2.0 Coming Soon!




TAME 2.0 Chapter 4
Converting Wet Lab Data Into Dry Lab Analyses
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TAME 2.0 Chapter 5, Module 1:

Introduction to Machine Learning and Artificial Intelligence

» General historical context and taxonomy
of modern AI/ML, including ChatGPT!

» Application of machine learning in
environmental health science
« Why do we need machine learning?

« Machine learning vs. traditional statistical
methods

» Predictive modeling in the context of
environmental health science

» Additional applications of machine
learning in environmental health science

» Scripted examples of supervised and
unsupervised machine learning in the
following modules

oY ':3:"‘. 4 :

Dr. David Reif

Machine Learning

Artificial Neural
Networks (ANNs)

Deep Learning

Logistic Regression B Linear Regression

A ¥ =Bo+Bix
y
y A = predicted value
] By and B, are

Ys coefficients found by
the algorithm
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Support Vector Artificial Neural Decision Trees
Machines Networks
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Upcoming Research

“Mechanisms of wildfire smoke toxicity and susceptibility involving
extracellular vesicles in humans”

Goal: Determine differential responses to wildfire
smoke exposure in asthmatics and non-asthmatics
through the novel integration of EV signatures
obtained from epithelial in vitro studies with clinical
human in vivo studies on biomass smoke exposures.

We hypothesize that the hypoxia inducible factor 1
subunit alpha (HIF-1a) pathway mediates
differential inflammatory responsiveness to
biomass smoke exposure between asthmatics vs
non-asthmatics through extracellular vesicle (EV)-
mediated communication.

Aim 1: In Vitro
|

7 Asthmatic vs.

Non-asthmatic
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Aim 2: In Vivo
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Thank you! Questions?

Contact: ehickman@email.unc.edu




