Chemical Carcinogenicity Revisited

Presented by
Penelope A. Fenner-Crisp, PhD, DABT
Rita Schoeny, PhD
Samuel M. Cohen, MD, PhD

Risk Assessment Specialty Section Webinar
Society of Toxicology
November 13, 2019


A unified theory of carcinogenicity based on contemporary knowledge – Dr. Fenner-Crisp

Current knowledge of carcinogenesis shows that categorization as a carcinogen or non-carcinogen is not scientifically credible – Dr. Schoeny

Risk assessment of carcinogenic potential based on the current state of knowledge of carcinogenesis in humans – Dr. Cohen
A unified theory of carcinogenicity based on contemporary knowledge
What is our current understanding of the phenomenon we define as “carcinogenesis?”

How should we interpret and apply this understanding in the context of characterizing the carcinogenic potential of agents to which we are exposed in our environment?

Does the current Framework for researching, testing, analyzing, assessing, classifying, labelling and managing known or hypothesized hazard and risk for this endpoint of concern represent the most scientifically-sound approach to protection of the public health?
Carcinogenesis

Cancer is due to mistakes occurring in the DNA.

More than one mistake in the DNA is necessary.

All of the mistakes need to accumulate in a single cell (clonal origin of cancer).

The cell populations at risk are the tissue pluripotent (stem) cells.

Every time DNA replicates, permanent mistakes can occur.

Carcinogenesis is a stochastic process.

Doe et al., Reg Tox Pharm 103:124–129, 2019
Conceptual model of chemical carcinogenesis

- Requires sufficient exposure and maintenance of a sustained stress environment.

- Source 
  - Fate/Transport 
  - Exposure 
  - Tissue Dose

- Biologic Interaction

- Perturbation through Toxicity Pathway

- Adaptive Stress Responses

- Adapted Cell to maintain normal biological function

- H Hereditary Factor
- R Constitutive Replication
- \( E_G \) Genotoxic Environmental Factor
- \( E_{IR} \) Environmentally Induced Replication

- a - Proliferation
- m - Mutation
- d - Death
- r - Repair

- Transformed Cell that survives and proliferates uncontrollably toward neoplasia

Wolf et al., Reg Toxicol Pharmacol 103:86–92, 2019
First step toward initiation of a somatic cell

The parent cell divides (α) and has a risk of mutation (μ, small case letters) to occur.

These mutations may be repaired (ρ) or one or more may be of such significance that they induce the cell to die (δ).

The outcome of this could be a daughter cell that is a clone of the parent (A), a dead cell (B) because the mutation(s) was(were) not compatible with a functional life, or a daughter cell that contains a mutated gene (C).

Wolf et al., Reg Toxicol Pharmacol 103:86–92, 2019
The integration of drivers of mutational events leading to a fully initiated cell
Population model of chemical carcinogenesis. Requires sufficient exposure and maintenance of a sustained stress environment.

- H Hereditary Factor
- R Constitutive Replication
- \( E_G \) Genotoxic Environmental Factor
- \( E_{IR} \) Environmentally Induced Replication

\( \alpha \) – Proliferation
\( \mu \) – Mutation
\( \delta \) – Death
\( \rho \) – Repair

Wolf et al., Reg Toxicol Pharmacol 103:86–92, 2019
In response to the sustained stress environment, the hyperplasia continues to accumulate the capabilities that enable it to survive and through replication leads to malignancy.
Question: Does the current Framework for researching, testing, analyzing, assessing, classifying, labelling and managing known or hypothesized hazard and risk for this endpoint of concern represent the most scientifically-supportable approach to protection of the public health?

Answer: A resounding “No!”