The Environmental Health Language Collaborative: Using Harmonized Language to Address Environmental Health Challenges
AGENDA

The Value of Language and Community
Stephanie Holmgren (NIEHS)

What Data Exists for a Given Chemical/Endpoint/Exposure Scenario?
Michelle Angrish (EPA)

Bridging Exposure and Biomarkers of Exposure
Stephen Edwards (RTI International)

Q&A/Discussion
The Value of Language and Community

Stephanie Holmgren, NIEHS
Outline

• The Value of Harmonized Language
 o Semantically Speaking
• The Value of Community
 o EHLC – Building a sustainable community
 o EHLC – Developing semantic solutions
• September Workshop
The Value of Language

Collective recognition that the lack of harmonized language for describing environmental health data, findings, and knowledge has been a barrier for research and policy decisions.
Contributor – Diverse Data Types
Contributor – Diverse Perspectives

Regulators / Policy Makers

Biomedical Researchers

Clinicians and Allied Health Professionals

Toxicologists

Consumers / Patients / Public

Risk Assessors

Program Managers

Earth Sciences Researchers

Physical / Chemical Sciences Researchers

Risk Assessors

Public Health / Disaster Response

Data Scientists

Data Curators

Social Sciences Researchers

Epidemiologists

Regulators / Policy Makers

What are the health and economic benefits from regulations or policies that reduce exposure to X?

What biological processes are involved in observed changes in endpoints?

What is my biggest exposure risk based on my geographical location or occupation?

For what components of X industrial emission do we need more information on health outcomes?
The Complexities of Documenting Exposures
The Complexities of Documenting Exposures

The Complexities of Documenting Exposures

Challenges = Opportunities

• Researchers in describing and comparing findings
• Data managers in organizing and representing data
• Data wranglers in finding and integrating data for analysis
• Model developers in using reference data collections
• Knowledge graph developers in linking data
• Tool developers in making scientific applications
• Informaticians seeking to automate literature processing and extraction techniques
NIH requires researchers to prospectively plan for how scientific data will be preserved and shared through submission of a Data Management and Sharing Plan.
Collaboration and search are easier when everyone is using a set of terms with an agreed upon definition.

The hierarchical structure helps us integrate data collected at different levels of granularity and search for data using high level categories.

In addition to the hierarchy, the presence of synonyms further improves integration and search over heterogeneous data.

The combination of formal logic and persistent, unique identifiers enables inferencing, makes data computable, and reveals novel connections.

Why Use It?

- **Consistent**: Collaboration and search are easier when everyone is using a set of terms with an agreed upon definition.
- **Hierarchical**: The hierarchical structure helps us integrate data collected at different levels of granularity and search for data using high level categories.
- **Associative**: In addition to the hierarchy, the presence of synonyms further improves integration and search over heterogeneous data.
- **Inferential**: The combination of formal logic and persistent, unique identifiers enables inferencing, makes data computable, and reveals novel connections.

Examples

- **HAWC EHV; LTER Controlled Vocabulary**
- **NCBITaxon**
- **NCIThesaurus; MeSH**
- **OBO Foundry Ontologies; UBERON**
Knowledge Representation

Pollution Ontology
- Dust
- Combustion Particles
 - is a
 - Coarse Particulate Matter
 - is a
 - Fine Particulate Matter
 - part of
 - Air Pollution

Disease Ontology
- Asthma
- COPD
 - is a
 - Lower Respiratory Tract Disease
 - realizes
 - Severe (Asthma, COPD) Disease Course
 - has part
 - Respiratory Outcome
 - has outcome
 - Hospitalization

What's driving an increase in hospitalizations?

Databases
For Air Quality and Disease Prevalence in US Cities*

Knowledge Graph & Reasoners

- Coarse Particulate Matter
- Fine Particulate Matter
- Air Pollution in US Cities
- Asthma in US Cities
- COPD in US Cities
- Hospitalizations

*Captured using common data elements in a data model with minimal information standards captured using controlled vocabularies.
- Adding annotation makes it easier to find your data and use it in a purposeful way
- Builds connections between in vivo endpoints and in vitro tests aiding NAMs development
- By specifying the relationships between entities and roles they fill, interpreting the outcome of an assay becomes easier for non-domain experts
- Supports artificial intelligence approaches to finding and integrating information and knowledge developing NAMs
The Value of Community

Environmental Health Language Collaborative

Building a Sustainable Community
What is Community?

“A community is comprised of an **intentional collective** of people who gather and “**think together**” to address **common interests and goals**. A community commits to empowering its members to **govern** its operations, **guide its development**, and **achieve its purpose**.”

Sources: Educopia Field Guide and Pyrko et al (2017)
Building on the shoulders...

- Common Data Elements
- Minimal Information Standards
- Standard Vocabularies
- Ontologies
- Knowledge bases
Why start this effort?

Forum to:
• engage diverse perspectives
• raise awareness of efforts
• identify opportunities
• seek synergies
• represent EHS-needs
• pinpoint gaps
Environmental Health Language Collaborative

Vision
What do we aspire to achieve?

The vision of the Environmental Health Language Collaborative is to leverage community-driven environmental health language standards to catalyze knowledge-driven discovery and improve public health.

Mission
What is our fundamental purpose?

The mission of the Environmental Health Language Collaborative is to advance integrative environmental health sciences research by developing and promoting adoption of a harmonized language.
Goals

Develop Language-Based Solutions
- Foster community-based extension and development of knowledge organization systems (KOS)
- Promote and develop methods/tools for applying harmonized language in research

Implement Language-Based Solutions
- Apply language standards and best practices for accurate environmental health data and knowledge representation

Advocate Value of Language
- Cultivate a vocabulary-aware environmental health community

Roles

Forum to coordinate
- identifying use cases and needs
- prioritizing activities
- strategies and approaches for solutions

Platform for collaboration to develop semantic solutions to address identified needs

Community hub to
- identify and promote incentives and support adoption and use of semantic approaches
- identify and apply metrics to gauge success
- offer a resource clearinghouse

Community of practice to
- exchange information, ideas, expertise
- foster education and training
How will the Collaborative work?
Research Data Alliance
rd-alliance.org

Mission: to build the social and technical bridges to enable open sharing and re-use of data to accelerate data-driven innovation.

Goals:

- exchange knowledge and share discoveries
- discuss barriers and potential solutions
- explore and define policies, and
- harmonize standards to enhance/facilitate global data sharing, interoperability, and re-use.
Research Data Alliance
rd-alliance.org

Membership: volunteer, community-driven, international initiative - individuals (11,445 members from 145 countries) and organizational and affiliate members (61)

Plenaries: meet every 6 months (April and November)

RDA 18th (virtual) Plenary Meeting
3-18 November, 2021

https://www.rd-alliance.org/plenaries/rda-18th-plenary-meeting-virtual
Model in Practice

Investigator leads use case
Use case developed
Working group formed
Working group activities
Working group products

Advances and informs goals and priorities

RDA EHS IG
Supports priorities, work, collaborations, and dissemination

Raise awareness of need
Identify collaborators
Tap into expertise

Create RDA Working Group (optional)
Use plenary sessions to do work
Additional support via workshops or webinars

Present on product(s)
Add to resource clearinghouse
Assist with dissemination/adoption

Priorities, gaps, & products
Sustaining the Community Model

NIEHS Engagement
- In-kind support
- Funding support
- Workshops/Codeathons
- Policies and Processes

Discipline-Specific Communities and RDA members
- In-kind volunteer support

Collaborating Partners
- In-kind volunteer support
- Funding support

Community Model
- Discipline-Specific Communities
- Use Cases
- Platform for Collaboration
- Ontology Framework
- Outreach and Partnerships
Environmental Health Language Collaborative
Developing Semantic Solutions
Importance of Use Cases for the EHLC

- Opportunities for New Researchers
- Stress Test for Knowledge Organization Systems
- Training Materials for Workforce
- Identification of Gaps
- Provides Argument for Funding
- Advance Research Capabilities

Stress Test for Knowledge Organization Systems
Identification of Gaps
Training Materials for Workforce
Provides Argument for Funding
Advance Research Capabilities
Opportunities for New Researchers
Use Case Development

- Initial Formulation of Use Cases and Sub Use Cases (2020)
- Refinement to Five Use Cases and Sub Use Cases (2020-2021)
- Champions focused on Use Cases (2021)
- Preliminary Work Groups (Summer 2021)
- Workshop (September 2021)
- Next Steps (2021-2022)

* https://www.niehs.nih.gov/research/programs/ehlc/use-cases/index.cfm
Current Use Cases

• What data exists for a given chemical/endpoint/exposure scenario? (Michelle Angrish, EPA)

• What are the biological processes and biomarkers associated with exposure and how do they relate to the potential for an adverse outcome associated with a given exposure (Steve Edwards, RTI and Chirag Patel, Harvard)

• Data and tools needed to harmonize place-based health research (Carmen Marsit, Emory)

• How do we combine individual-level data from multiple independent studies to understand how exposures X+Y impact health outcome Z? (Jeanette Stingone, Columbia)
September 9-10 Workshop

Catalyzing Knowledge-Driven Discovery in Environmental Health Sciences through a Harmonized Language

Pre-Workshop

- The Value of Creating Language and Community in Catalyzing Knowledge-driven Discovery in Environmental Health Research
- A Primer on Using Terminologies, Vocabularies, and Ontologies for Knowledge Organization
- Use Case Meetings

September Workshop

- Community Feedback
- Background for developing solutions
- Draft Use Case Packages

Track 1: Build a Sustainable Community

Track 2: Develop Semantic Solutions
Workshop Goals and Outputs

Track 1: Build a Sustainable Community
Begin formation of a collaborative and cross-disciplinary community that will identify, develop, and champion the extension and use of language approaches within and across environmental health research.

Track 2: Develop Semantic Solutions
Define use cases in environmental health sciences research and begin identifying semantic needs, gaps, and next steps for implementing solutions.

- Achieve community agreement on the purpose and scope of the Collaborative as well as plan for how the Collaborative will work and define its success
- Make progress on the initial use cases and develop post-workshop action plans
- Begin compiling list of other use cases and needs
Sustaining the effort
Collaborative Next Steps

Build a Sustainable Community
- Refine vision, mission, goals, and roles
- Agree on community model governance
- CDISC Presentation

Build Semantic Solutions
- Use Case Working Groups
- Identify low-activation ideas - quick implementation, high impact
- Identify ontologies relevant to EHS
Become Involved

• Email Stephanie (Holmgren@niehs.nih.gov)
 o Volunteer to participate on a use case or topic working group
 o Submit ideas for use cases/semantic needs
• Join the EHLC email listserv - https://tinyurl.com/nfxp8ycf
• Learn more about the Collaborative at https://www.niehs.nih.gov/research/programs/ehlc/index.cfm
• Spread the word!
Acknowledgement

NIEHS
Shannon Bell
Gwen Collman
Chris Duncan
Jennifer Fostel
Richard Kwok
Ruth Lunn
Anna Maria Masci
Alison Motsinger-Reif
Charles Schmitt
Vickie Walker

Contract Support
Canden Byrd (ICF)
Ryan Cronk (ICF)
Courtney Lemerais (ICF)
Kim Osborn (ICF)
Jessica Wignall (ICF)
Rebecca Boyles (RTI)
Anne Thessen (CU Anschutz)

Community Advisors
Michelle Angrish (EPA)
Stephen Edwards (RTI)
International
Carmen Marsit (Emory)
Rachel Morello-Frosch (UC Berkeley)
Chirag Patel (Harvard)
Jeanette Stingone (Columbia)
Robyn Tanguay (OSU)
Thank you!

Please feel free to reach out to me with questions or further discussion.

Stephanie Holmgren
NIEHS, Office of Data Science
Holmgren@niehs.nih.gov
What Data Exists for a Given Chemical/Endpoint/Exposure Scenario?

Dr. Michelle Angrish

The views and opinions expressed here do not reflect official US Environmental Protection Agency policy.
Challenge/purpose

• Understanding the health effects of environmental exposure requires finding and integrating relevant information

• Finding that information can be a challenge because one must
 1. know **where** to look and **how** to find it,
 2. have the resources to **collect, screen, and curate** the information, and
 3. assimilate that information so that it is **accessible and usable**.

• Such a workflow is further complicated because **study reports** are the typical form of information

Purpose is to develop solutions toward **identifying, connecting, and making use of environmental health science resources**
Final desired output

We will aim to develop tools and strategies to facilitate interoperability of existing databases.
Workshop goal

We will aim to identify and define concepts and features that are common across representative environmental health datasets that are needed to achieve resource interoperability.
Progress

Key points raised, gaps, and challenges
Defined use case question

What are the needs
Key points raised

1. Defining the end goal of data acquisition/solutions and needs will be fit for purpose
2. Understanding the players/roles and their different needs when designing tools/resources
3. Solutions will likely be a blend of 20th century approaches (standards, structures) with modern techniques (AI/NLP)
4. Curation is critical and still resource intensive
Gaps

1. Data producers and consumers lack information on sources, tools, and “best practices” limiting adoption

2. Lack of structures to require/encourage use of standardized terminology (e.g., requirements by publishers or funding agencies)

3. Availability of data in public space along with well-curated training data to support method development
Challenges

1. Sorting out the **subject domain-specific differences**
2. Encouraging use of **unique/specific identifiers** and appropriate metadata
3. Ensuring the **context needed** to use data is provided/identified in search
4. How do we **stop feeding the unstructured data problem**?
Next steps

1. Assembly of resources, core trainings that are available to stakeholders to support finding and creating structured data
2. Development of “standards” or tools to support creation and sharing of structured data

If interested in participating, email
Stephanie Holmgren, holmgre1@niehs.nih.gov and
Michelle Angrish, angrish.michelle@epa.gov
Thank you!
Bridging Exposure and Biomarkers of Exposure

Stephen Edwards, RTI
“What are the biological processes and biomarkers associated with exposure and how do they relate to the potential for an adverse outcome associated with a given exposure?”

Chirag Patel, Harvard
Stephen Edwards, RTI
Why are we exploring this use case?

• This use case is intended to build upon the other use cases and consider a more complex question
 • Will run in parallel with the other use cases but with a longer timeline
 • Will utilize interim results from the other use cases and provide feedback on their general utility
 • Will provide a 'Big Hairy Audacious Goal’ for the initiative
 • Collins and Porras “Built to Last: Successful Habits of Visionary Companies” (1994)
Why are we exploring this use case?

From preworkshop presentation by Anne Thessen

See Thessen et al. *Environmental Health Perspectives* 128:125002 (2020) https://doi.org/10.1289/EHP7215

Semantic Model of an Exposure Event.

This figure shows the basic structure of an exposure event according to the Exposure Ontology (ExO; Mattingly et al. 2012). ExO is the foundational model for the Comparative Toxicogenomics Database (CTD; Mattingly et al. 2006).
Benefit of developing solutions around this use case

This use case provides a longer-term horizon to both guide and expand upon the other use cases

1. Provide additional context for the short-term use cases
2. Identify additional short-term use cases
3. Build upon results from the short-term use cases immediately
Workshop goal

Connect measured biomarkers to exposure-response relationships with a
• semantic description of exposure events
• that incorporates the associated biomarkers and biological processes
• to support the integration of existing data resources
Proposed approach to achieve workshop goal

Extend the **semantic description of the exposure event** to explicitly include measurements as previously done for adverse outcome pathways

https://doi.org/10.1016/j.taap.2019.114707
Proposed approach to achieve workshop goal

Extend the **semantic description of the exposure event** to explicitly include measurements as previously done for adverse outcome pathways.

Biomarkers of Exposure
- Parent
- Metabolites
- Chemical signatures
- Response signatures*

Considerations
- Biological matrix
- Timing of exposure and measurement
- Pharmacokinetics
- Understanding of the biomarker
- Covariates impacting measurement (e.g. hydration)
- ...
 - Also biomarkers of effect
Proposed approach to achieve workshop goal

Semantically link the exposure event to adverse outcomes by connecting the perturbed biological processes with toxicity mechanisms.
Proposed approach to achieve workshop goal

Split into two breakout groups to consider both perspectives

1. Semantic description of the exposure event
 a) What information is needed to interpret biomarker measurements?
 b) How do we ensure that measurements can be connected back to databases containing information about exposure potential?

2. Semantically link the exposure event to adverse outcomes
 a) How to define the biological processes in terms that connect to mechanisms of disease such as AOPs?
 b) Can we harmonize different representations of mechanisms such as AOPs, Causal Activity Models, and Monarch Phenotypes—Genotypes
Breakout Group 1

1. What biomarkers are directly indicative of exposure to a given chemical? Biomarkers can include direct measurement of the chemical or its metabolites and can be identified associatively or experimentally through epidemiological or experimental approaches, respectively.

2. What are the exposures that are associated with the observed biomarkers in an epidemiological study? One may observationally or experimentally find biomarkers associated with health and disease – what are potential exposures that may also induce changes in the biomarkers?

Breakout Group 2

1. Map signatures of ‘omic changes to chemical exposure: Query for organ-specific signatures of ‘omic biomarkers, across the metabolome or the transcriptome, that are indirectly or directly associated with exposure.

2. What biological processes are linked to biomarkers that are indicative of the exposure? If an exposure is causal for a change in state, their biomarkers must also be directly or indirectly associated with biological processes. Given biomarkers that are indicative of exposure to a chemical or class of mechanistically related chemicals, query for all biological processes that are associated with changes in the biomarker(s).
Key points raised

1. Is an “exposure event” the same as an AOP initiating event? No.
 a) Not all exposures result in adversity.
 b) One exposure can have multiple outcomes.
 c) One outcome can result from many exposures.

2. ‘Omics measurements hold great promise for connecting exposure events and the biological impacts of those events.
 a) Can fill gaps in our knowledge where targeted biomarkers are not yet available
 b) Our EHS language must be precise enough to guarantee these types of data are correctly interpreted

3. The ability to combine and query data across model organisms is very important.
 a) The AOP framework accommodates this extremely well
Exposure event vs. molecular initiating event
Example of precise language – measurement vs. event

Biomarkers of Exposure
• Parent
• Metabolites
• Chemical signatures
• Response signatures

Considerations
• Biological matrix
• Timing of exposure and measurement
• Pharmacokinetics
• Understanding of the biomarker
• Covariates impacting measurement (e.g. hydration)
Key points raised - Biomarkers

1. Susceptibility vs. exposure: Toxic agent, metabolites, and secondary markers with markers for susceptibility throughout.
2. Should include exposure pathways and other contextual information.
3. Separate the marker from what the marker can represent.
4. Need to build from existing resources such as NAS Exposure Science and EPA Cumulative Risk Framework

Graphic courtesy of Annie Jarabek

Key points raised – Use Cases

1. **PM**: synergies with separate use case focused on exposure routes
2. **Carbon monoxide** - **cardiovascular** and susceptibility markers
3. **Smoking** and **chronic outcomes**: ‘omic markers may be indicative of both exposure and biological response.
4. **Phthalates** and **asthma**: may be possible with NIEHS sponsored data, including HHEAR/ECHO

5. **Should include**: AOPs, omic data, large cohorts (e.g. HHEAR, ECHO), and model system databases (e.g., epigenome roadmap)
Gaps

1. Methods to link/annotate actual data (from labs) with ontologies
2. Identify what types of numerical or statistical models are needed
3. We are still identifying biomarkers, even for known exposures
4. Examples that include all desired information (exposure routes, biomarkers from known exposures, biomarkers of different types…)
5. How do we disseminate complex ‘omics information?
6. How do we know when we are successful? (e.g., the dimensionality of ‘omics and biomarker data may be large and how informative they might be in addressing a use case may not be known)
Challenges

1. Capturing and integrating the information from the people who are experiencing the adverse outcome and connecting that data to research measurements.
2. Integrating different types of data in order to tease apart association and causation. When we find a method that works, how do we repeat and generalize?
3. Modeling complex biomarkers that might be cell or tissue specific (and dependent on the route of exposure)
4. Dimensionality of the problem
5. Noise in our measurements
6. Define how detailed these models need to be to be useful
7. Data is at different scales, modalities, organisms, and tissues
8. AND SCOPE!!
Data and Knowledge Resources (examples)

Knowledge resources
• Monarch Initiative

Cohort data
• HHEAR, ECHO

Model system and/or experimental resources
• NIEHS Target II
Next steps

1. Identify participants who want to work on a specific sub use case (1-4)
 - Reach out to community (HHEAR, ECHO, Superfund) for translational component
2. Articulate the scientific applications
 - e.g., Smoking, Phthalates, PM
 - Create context for the translational work
3. Articulate data sources beyond those mentioned
4. Coordinate with the other use cases
5. Determine a timeline for this use case

If interested in participating, email
Stephanie Holmgren
holmgre1@niehs.nih.gov,
Chirag Patel
Chirag_Patel@hms.harvard.edu,
AND
Steve Edwards
swedwards@rti.org
Thank you!