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EPA’s Exposure Forecasting Project

• EPA Office of Research and Development Exposure Forecasting 
(ExpoCast) project was established in 2009 as a partner project 
to EPA’s Toxicity Forecasting (ToxCast) project

• ExpoCast seeks to develop the data, tools, and evaluation 
approaches required to generate rapid and scientifically-
defensible exposure predictions for the full universe of existing 
and proposed commercial chemicals

• 380+ peer-reviewed publications since 2010

• ExpoCast scientists and trainees develop New Approach 
Methodologies (NAMs) for exposure

EPA Office of Research and 
Development Facility in

Research Triangle Park, NC

Slide adapted from Kristin Isaacs
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Pathways of Chemical Exposure
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Pathways of Chemical Exposure
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Exposure Pathway Models
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Systematic Empirical Evaluation of Models (SEEM)

Wambaugh et al., 2019
7

Space of 
Chemicals

Chemicals with 
Monitoring 

Data

In
fe

rr
e

d
 I

n
ta

ke
 R

at
e

Model 1

Model 2
Evaluate Model Performance

and Refine Models

Dataset 1

Dataset 2…

Exposure 
Inference Different 

Chemicals

Available Exposure Predictors

…



Systematic Empirical Evaluation of Models (SEEM)
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Systematic Empirical Evaluation of Models (SEEM)
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How do we use biomonitoring data to 
evaluate high-throughput exposure models?
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How do we use biomonitoring data to 
evaluate high-throughput exposure models?

Wambaugh et al., 2013
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Problem Description
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Problem Description

Reverse toxicokinetics (tk) approach

• Assume individuals are at steady-state equilibrium due to a constant rate of 
exposure to one or more parent compounds (Lakind & Naiman, 2008; Mage et al., 2004; Tan et al., 2007)

• Estimate the rate at which chemicals are filtered into urine by the kidneys
• Chemicals are assumed to be (mainly) cleared by the kidneys via glomerular filtration, which 

can be estimated by creatinine excretion rates (CER)

• Creatinine correction

• When available, use urine flow data
• CER (gcreatinine/day) = creatinine conc. (g/mL) * urine flow rate (mL/min) * 24*60 (min/day) 

• When not available, model daily excretion
• Is a function of muscle mass, which is influenced by sex, race, age, and bodyweight

mg/kg/day 𝑖 =
1

BW kg

mg𝑖

gcreatinine
∗

gcreatinine
day
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How do we model this problem?

Model Needs

• Handle censored data

• Determine optimal parent-
metabolite fractions (𝜑’s)

• Incorporate distribution 
information for urine 
concentrations

• Include confidence assessment
• How certain are we of our results?

15



How do we model this problem?

Model Needs

• Handle censored data

• Determine optimal parent-
metabolite fractions (𝜑’s)

• Incorporate distribution 
information for urine 
concentrations

• Include confidence assessment
• How certain are we of our results?

Bayesian Inference

• Allows easy incorporation of 
censored data

• Can integrate prior information 
about the system
• Considers what we already know 

and extrapolates the rest from the 
accompanying data

• Returns a distribution of 
parameter values that aids in 
downstream statistical analyses
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Bayesian Inference
• A method of statistical inference using Bayes’ theorem

H = hypothesis, P(H) = prior probability, E = evidence, P(H|E) = posterior 
probability, P(E|H) = likelihood, P(E) = model evidence 

• Uses prior knowledge (prior distribution) in order to estimate 
posterior probabilities

• Models describe the problem as a directed graph where nodes 
are parameters and data, and edges denote dependencies 
between parameters and data

• Employs Markov Chain Monte Carlo (MCMC)
• A method for integrating over probability space to perform a Bayesian 

analysis (Gelman et al., 2013)

• Converges on the “posterior” space where all iterations are equally likely 
and Markov chain iterations represent samples from the posterior 
distribution

• Can be implemented in R using JAGS (http://mcmc-
jags.sourceforge.net/) and Stan (https://mc-stan.org/) 
programming via the packages rjags and rstan

𝑃 𝐻 | 𝐸 =
𝑃 𝐸 𝐻)  ∙ 𝑃(𝐻)

𝑃(𝐸)
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Bayesian Inference
• A method of statistical inference using Bayes’ theorem

H = hypothesis, P(H) = prior probability, E = evidence, P(H|E) = posterior 
probability, P(E|H) = likelihood, P(E) = model evidence 

• Uses prior knowledge (prior distribution) in order to estimate 
posterior probabilities

• Models describe the problem as a directed graph where nodes 
are parameters and data, and edges denote dependencies 
between parameters and data

• Employs Markov Chain Monte Carlo (MCMC)
• A method for integrating over probability space to perform a Bayesian 

analysis (Gelman et al., 2013)

• Converges on the “posterior” space where all iterations are equally likely 
and Markov chain iterations represent samples from the posterior 
distribution

• Can be implemented in R using JAGS (http://mcmc-
jags.sourceforge.net/) and Stan (https://mc-stan.org/) 
programming via the packages rjags and rstan

model{

  ## Model the parent exposures

  for (i in 1:N) {

    lP[i] ~ dnorm(lPmu, tau.V)

    P[i]<- exp(lP[i])

  }

  lPmu ~ dnorm(0, 0.001)

  ## code so that prior for sd(log(P[i])) is half-Cauchy(25)

  sd.dum ~ dt(0,1/625,1)

  sd.V <- abs(sd.dum)

  tau.V <- 1/pow(sd.V,2)

  

  ## Link the unobserved parent exposure to the observed (but censored) metabolites.

  lU <- log(t(Phi) %*% P)

  ## tau.se <- 1/(se * se)

  for (j in 1:Mn) {

    ly[j] ~ dnorm(lU[j],tau.se[j])

  }

  for (j in (Mn+1):M) {

    Pralod[j - Mn] <- 1 - pnorm(lod[j - Mn], lU[j], tau[j - Mn])

    ly[j] ~ dbin(Pralod[j - Mn], SS[j - Mn])

  }

  ## Estimate mixmu, mixtau, mixpi externally, and input as data.

  for (j in 1:(M - Mn)) {

    lsd[j] ~ dnormmix(mixmu, mixtau, mixpi)

    tau[j]  <- exp(-2*lsd[j])

  }

  for (i in 1:NBranches)

  {

    phi[Bstart[i]:Bstop[i]] ~ ddirch(Alpha[Bstart[i]:Bstop[i]])

  }

  for (i in 1:Ndelta) {

    Phi[indx[i,1],indx[i,2]] <- phi[i]

  }

}

𝑃 𝐻 | 𝐸 =
𝑃 𝐸 𝐻)  ∙ 𝑃(𝐻)

𝑃(𝐸)
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Inferring Exposure from NHANES Data
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Inferring Exposure from NHANES Data
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The bayesmarker R Package

https://github.com/USEPA/CompTox-HumanExposure-bayesmarker

Stanfield et al., 2022
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Parent-Metabolite Network
• Wambaugh et al., 2013

• 68 metabolites linked to 109 
parent chemicals

• Stanfield et al., 2022
• 151 metabolites linked to 179 

parent chemicals (270 edges)
• New metabolites curated by 

Victoria Hull

• Evidence added from:
• NHANES reports

• Text mining of PubMed abstracts 
using chemical synonyms and 
metabolism keywords (Risa Sayre)

22
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NHANES Overview

https://www.cdc.gov/nchs/nhanes/index.htm
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NHANES Overview

https://www.cdc.gov/nchs/nhanes/index.htm
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NHANES Overview

https://www.cdc.gov/nchs/nhanes/index.htm
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NHANES Overview

Demographic 
Data
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NHANES Overview
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Results
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Demographic-specific Exposures Higher exposure to 
parabens for women, 

lower for men

Opposite exposure of most 
metals for children and seniors

Lower exposure for 
teens and seniors for 

certain fungicides 
and herbicides

Stanfield et al., 2022

Higher exposure to diazinon, lower 
exposure to omethoate and pyrene
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Examining Childhood Exposures (2015-2016)

• NHANES started monitoring 
urine metabolites in 3–5-
year-olds in the 2015-2016 
cohort

• Consistently higher exposure 
children aged 3-5, 
particularly for some metals 
and phthalates

• Noticeable difference for 
some personal care product 
chemicals between the two 
child populations compared 
to all individuals

Stanfield et al., 2022
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Translating Exposure to Risk

𝐵𝑖𝑜𝑎𝑐𝑡𝑖𝑣𝑡𝑦

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒
=

𝐻𝐸𝐷

𝑃𝑙𝑎𝑠𝑚𝑎 𝐶𝑜𝑛𝑐.
=

𝑐𝑎𝑙𝑐_𝑡𝑘𝑠𝑡𝑎𝑡𝑠(𝑜𝑟𝑎𝑙 𝑟𝑎𝑡 𝐿𝐷50 ∗ 𝐴𝐹)

𝑐𝑎𝑙𝑐_𝑚𝑐_𝑐𝑠𝑠(𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒)

Stanfield et al., 2022
32
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Contributors of Uncertainty

Metabolism

Censored Data

Stanfield et al., 2022
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Making the Most of the 
NHAENES Data

• The NHANES continuous survey cohorts 
can be compared or combined

• We can generate exposure estimates for 
each cohort individually

• We can compare changes in exposure 
for biomarkers measured in multiple 
cohorts

Stanfield et al., 2024
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Landscape of 
Chemical Exposure
• Exposure inference for 179 

chemicals spanning 18 years

• Summary statistics
• Median FC = 3.22

• 44 with FC > 10

• Deltamethrin had largest FC 
(increase; 369.91-fold or 2.57 
orders of magnitude)

Stanfield et al., 2024
36



Phthalates 

• Phthalates are used as 
plasticizers in a wide 
range of consumer 
goods such as

• Food packaging

• Vinyl flooring

• Personal care products 
(soaps, shampoos, hair 
sprays, cosmetics)

Phased into plastics
(ECHA 2010)

Banned from 
children’s related 
products in 2017
(CPSC 2017)

Banned from children’s 
related products in 2008 
by the U.S. Consumer 
Product and Safety 
Commission (CPSC)
(CPSIA 2008)

Stanfield et al., 2024
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Parabens

• Parabens are primarily 
used as preservatives and 
antibacterial agents in 
cosmetics and other 
personal care products 
(Shen et al., 2007)

• Similar results seen for 
pregnant women in 
Puerto Rico (Ashrap et al., 
2018)

Stanfield et al., 2024
38



Age-Specific 
Exposures

Previously used in plating and 
pigments in the 1990s

Then used in batteries

Recalls of children’s jewelry in 
2010 due to high levels of 
cadmium (CPSC 2010a; CPSC 
2010b)

A solvent used in production 
processes for a wide variety of 
products and practices, including 
preparation of polyacrylonitrile 
(Bipp 2011)

Used for chemical and 
polymer production 
(Brazdil 2012)

Commonly 
found in fish

Stanfield et al., 2024
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Where to Find Exposure Inferences
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Where to Find Exposure Inferences
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Where to Find Exposure Inferences
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Where to Find Exposure Inferences
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Summary

• A Bayesian inference approach was 
developed to provide higher-
throughput exposure estimates based 
on measured data (for calibration of 
exposure models)

• Extended the data (cohorts, 
chemicals, metabolism links)

• Streamlined the pipeline in the form 
of the bayesmarker R package

• Extended analysis to examine trends 
of exposure based on the NHANES 
metabolite panel

Future Work

• Obtain exposure estimates using 
NHANES blood/serum concentrations 
(ongoing)
• 76 chemicals (11 PFAS)

• All cohorts (~5 per chemical on avg.) and 
same population groups

• Use new inferences in the 
development of SEEM4
• Blood/serum and urine chemicals

• Demographic-specific models

44
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