

Using NHANES to Estimate Chemical Exposures and Inform High-Throughput Exposure Predictions

**Zachary Stanfield, R. Woodrow Setzer, Victoria Hull, Risa R. Sayre,
Kristin K. Isaacs, John F. Wambaugh**

SOT RASS-ESS-ISES Combined Webinar

February 14, 2024

Conflict of Interest Statement and Disclaimer

- The authors have no conflict of interest to disclose
- The views expressed in this presentation are those of the authors, and do not necessarily reflect the views or policies of the U.S. EPA

Overview

1. Background

1. ExpoCast Project

2. Modeling Exposure Pathways

2. Exposure Inference

1. Problem Description

2. Modeling Approach

3. Data

3. Results

4. Exposure Trends

5. Summary

Journal of Exposure Science & Environmental Epidemiology

www.nature.com/jes

 Check for updates

ARTICLE

Bayesian inference of chemical exposures from NHANES urine biomonitoring data

Zachary Stanfield ¹, R. Woodrow Setzer¹, Victoria Hull^{1,2}, Risa R. Sayre¹, Kristin K. Isaacs¹ and John F. Wambaugh¹

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022

BACKGROUND: Knowing which environmental chemicals contribute to metabolites observed in humans is necessary for meaningful estimates of exposure and risk from biomonitoring data.

OBJECTIVE: Employ a modeling approach that combines biomonitoring data with chemical metabolism information to produce chemical exposure intake rate estimates with well-quantified uncertainty.

METHODS: Bayesian methodology was used to infer ranges of exposure for parent chemicals of biomarkers measured in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). Metabolites were probabilistically linked to parent chemicals using the NHANES reports and text mining of PubMed abstracts.

RESULTS: Chemical exposures were estimated for various population groups and translated to risk-based prioritization using toxicokinetic (TK) modeling and experimental data. Exposure estimates were investigated more closely for children aged 3 to 5 years, a population group that debuted with the 2015–2016 NHANES cohort.

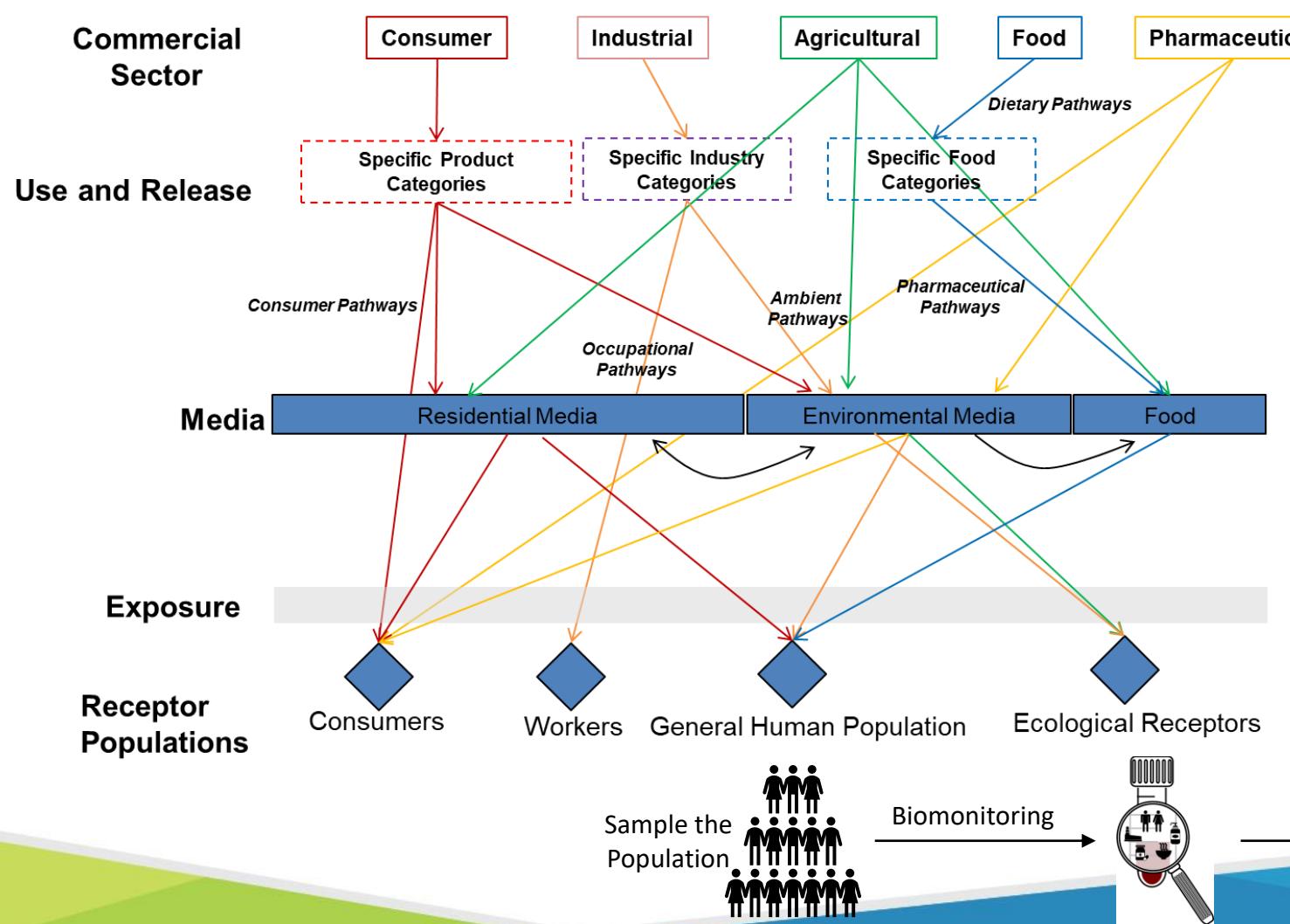
SIGNIFICANCE: The methods described here have been compiled into an R package, bayesmarker, and made publicly available on GitHub. These inferred exposures, when coupled with predicted toxic doses via high throughput TK, can help aid in the identification of public health priority chemicals via risk-based bioactivity-to-exposure ratios.

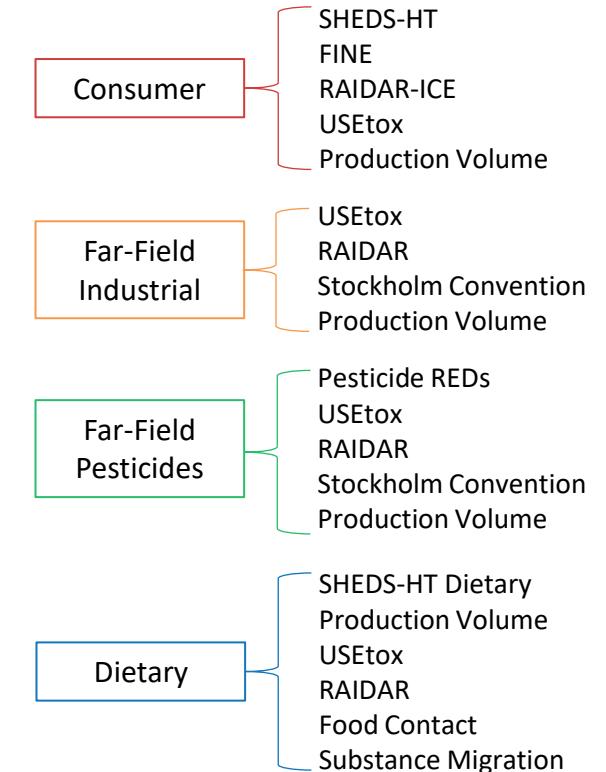
Keywords: Biomonitoring, Child Exposure/Health, Exposure Modeling, New Approach Methodologies (NAMs)

Journal of Exposure Science & Environmental Epidemiology; <https://doi.org/10.1038/s41370-022-00459-0>

Stanfield *et al.*, 2022

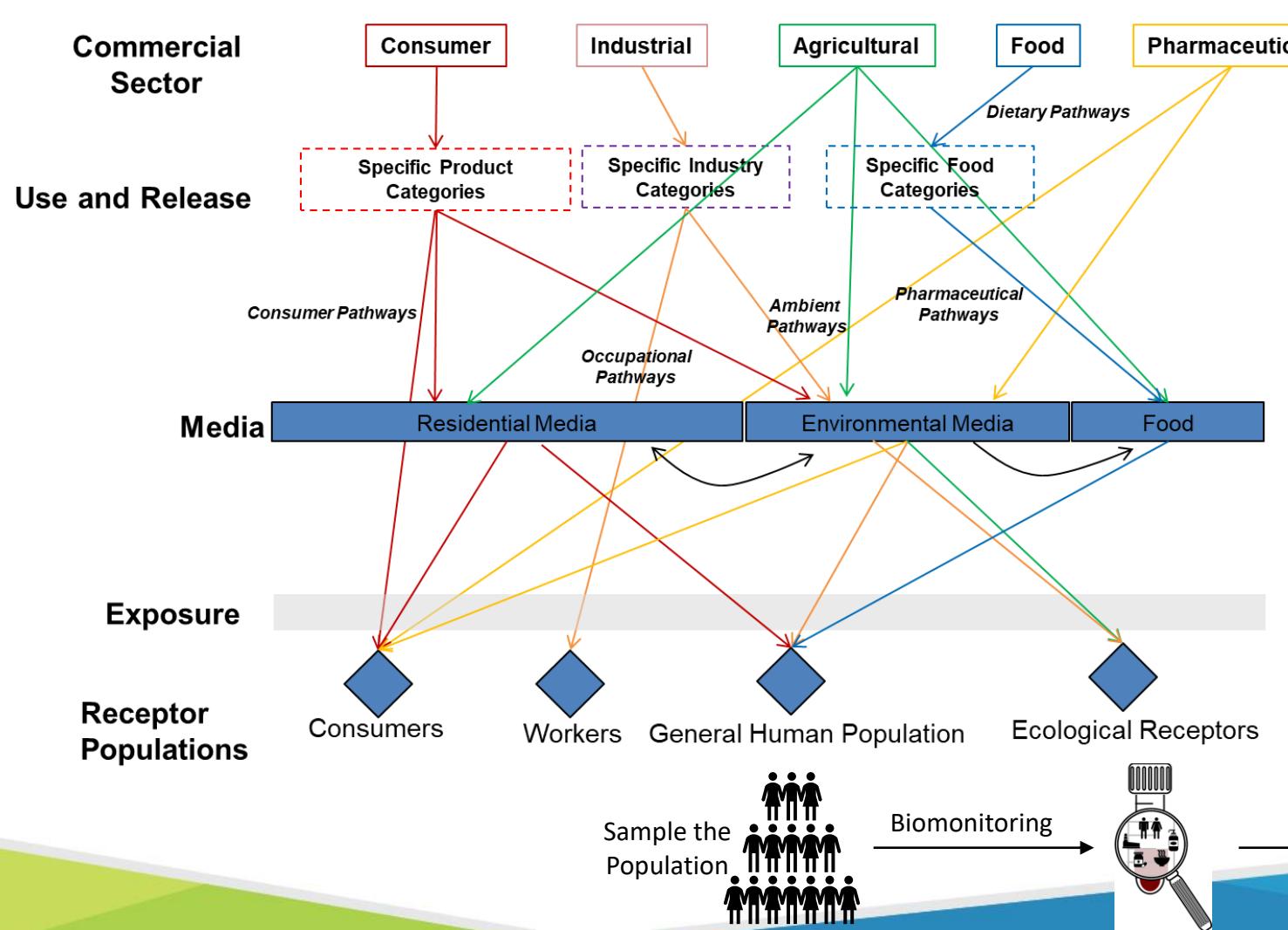
EPA's Exposure Forecasting Project


- EPA Office of Research and Development Exposure Forecasting (ExpoCast) project was established in 2009 as a partner project to EPA's Toxicity Forecasting (ToxCast) project
- ExpoCast seeks to develop the data, tools, and evaluation approaches required to generate rapid and scientifically-defensible exposure predictions for the full universe of existing and proposed commercial chemicals
- 380+ peer-reviewed publications since 2010
- ExpoCast scientists and trainees develop New Approach Methodologies (NAMs) for exposure

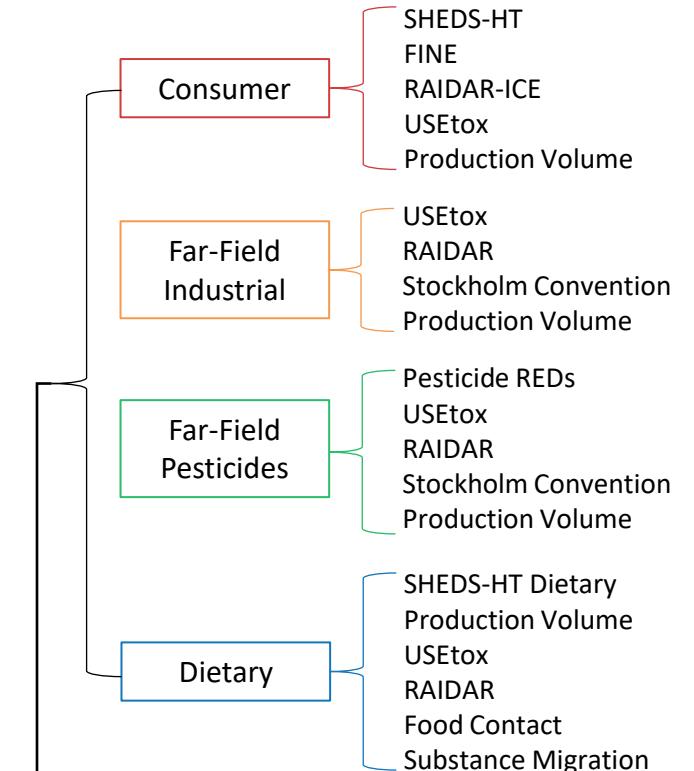

Credit: the Research Triangle Foundation

EPA Office of Research and Development Facility in Research Triangle Park, NC

Pathways of Chemical Exposure

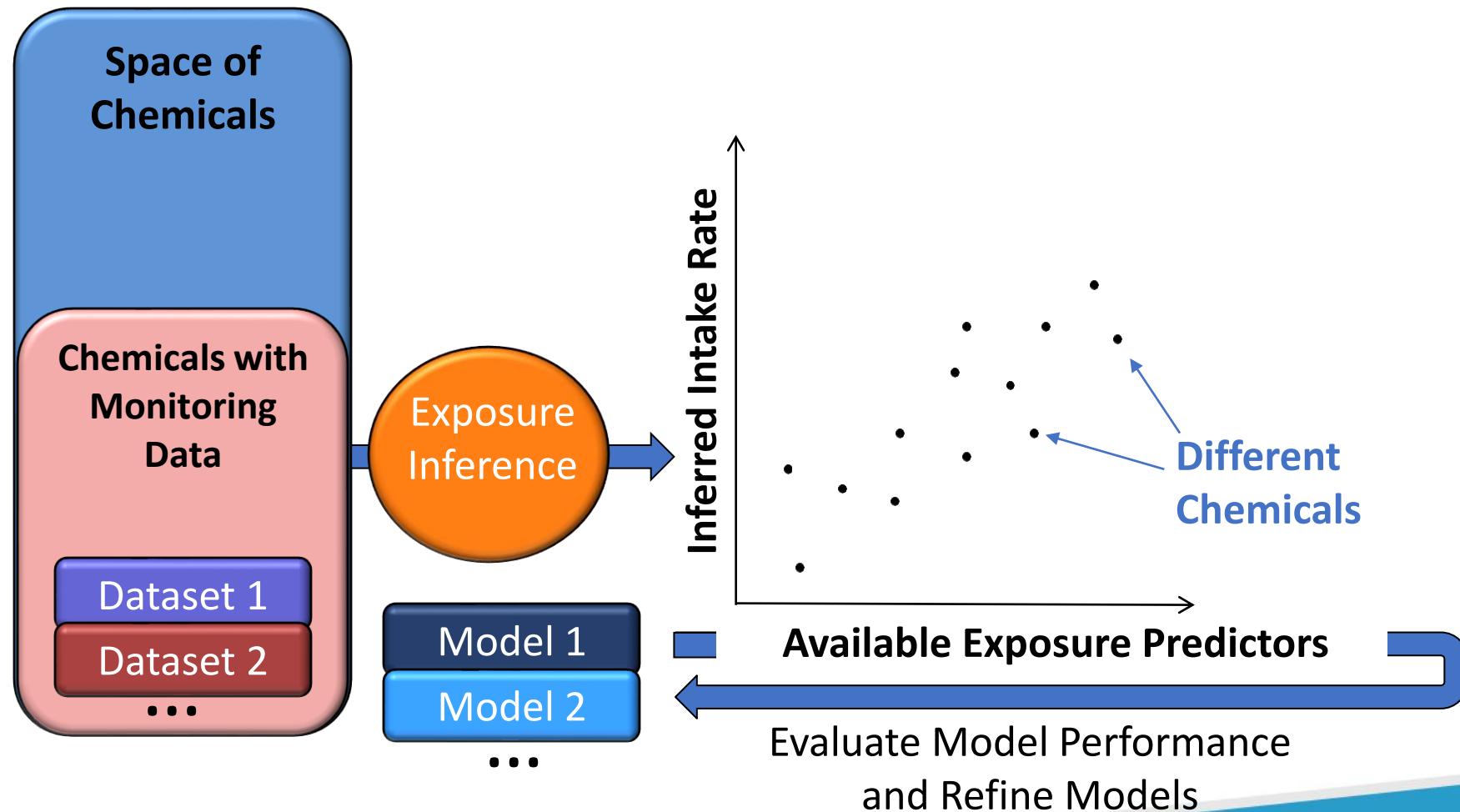


Exposure Pathway Models

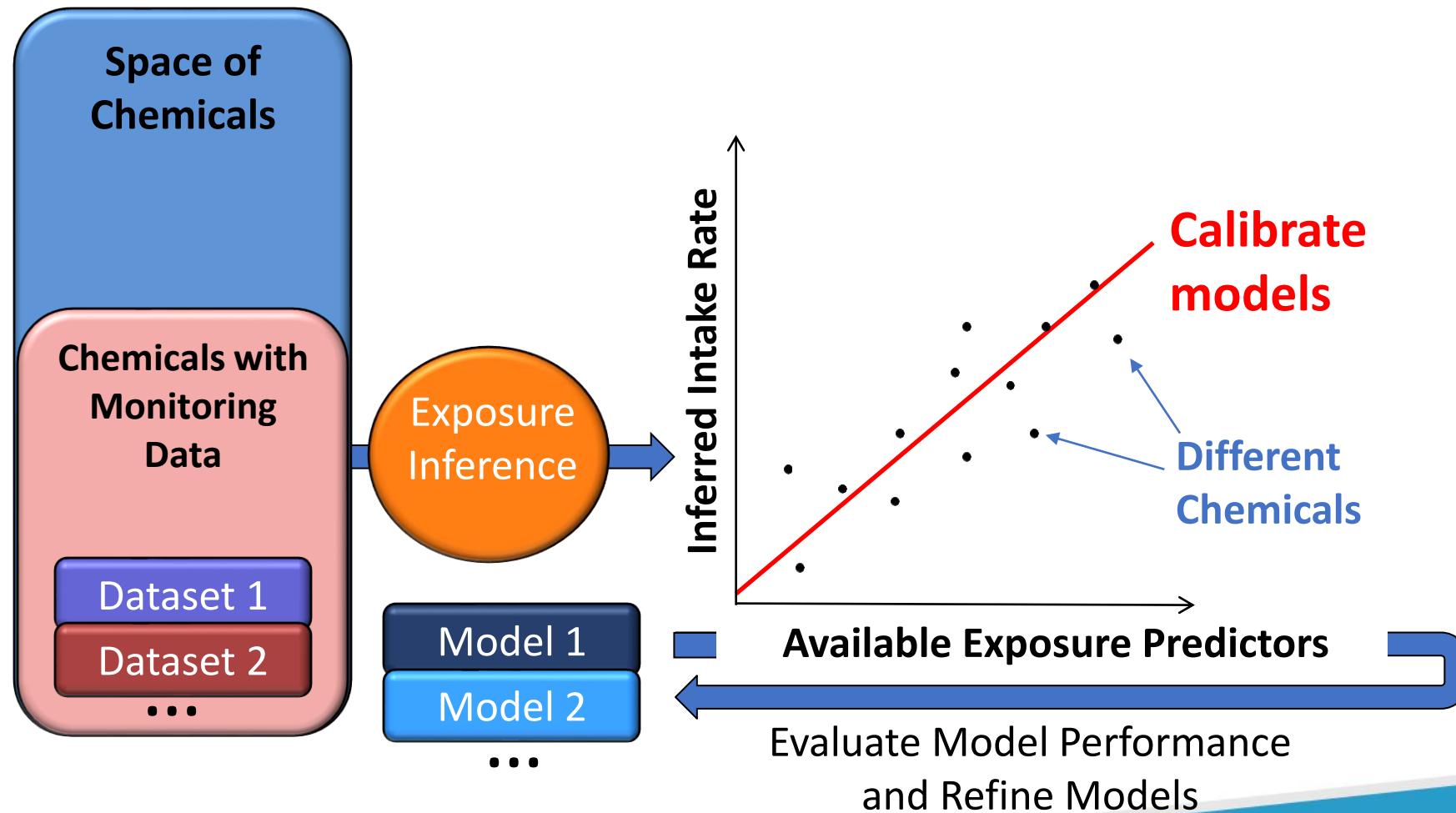


Ring et al., 2019

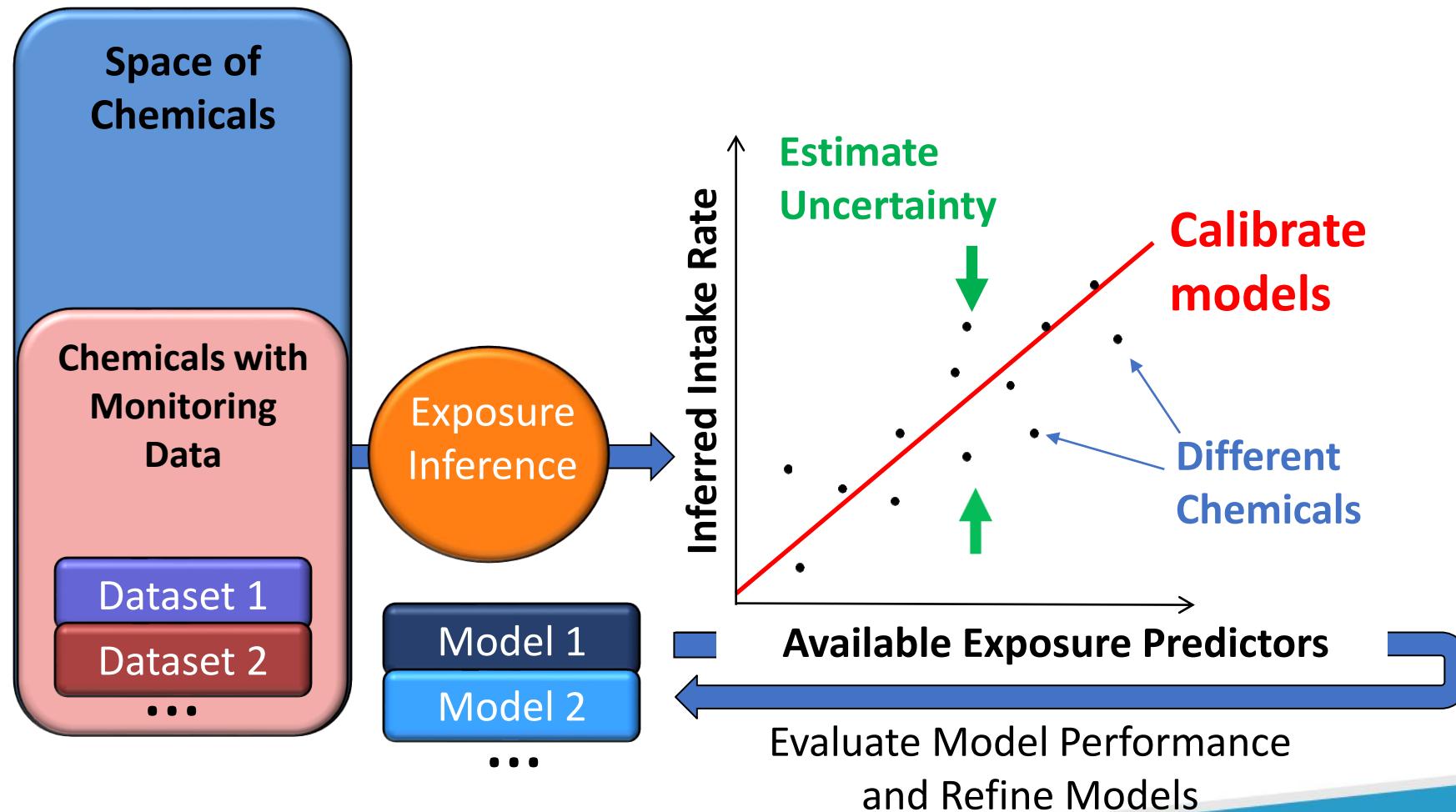
Pathways of Chemical Exposure

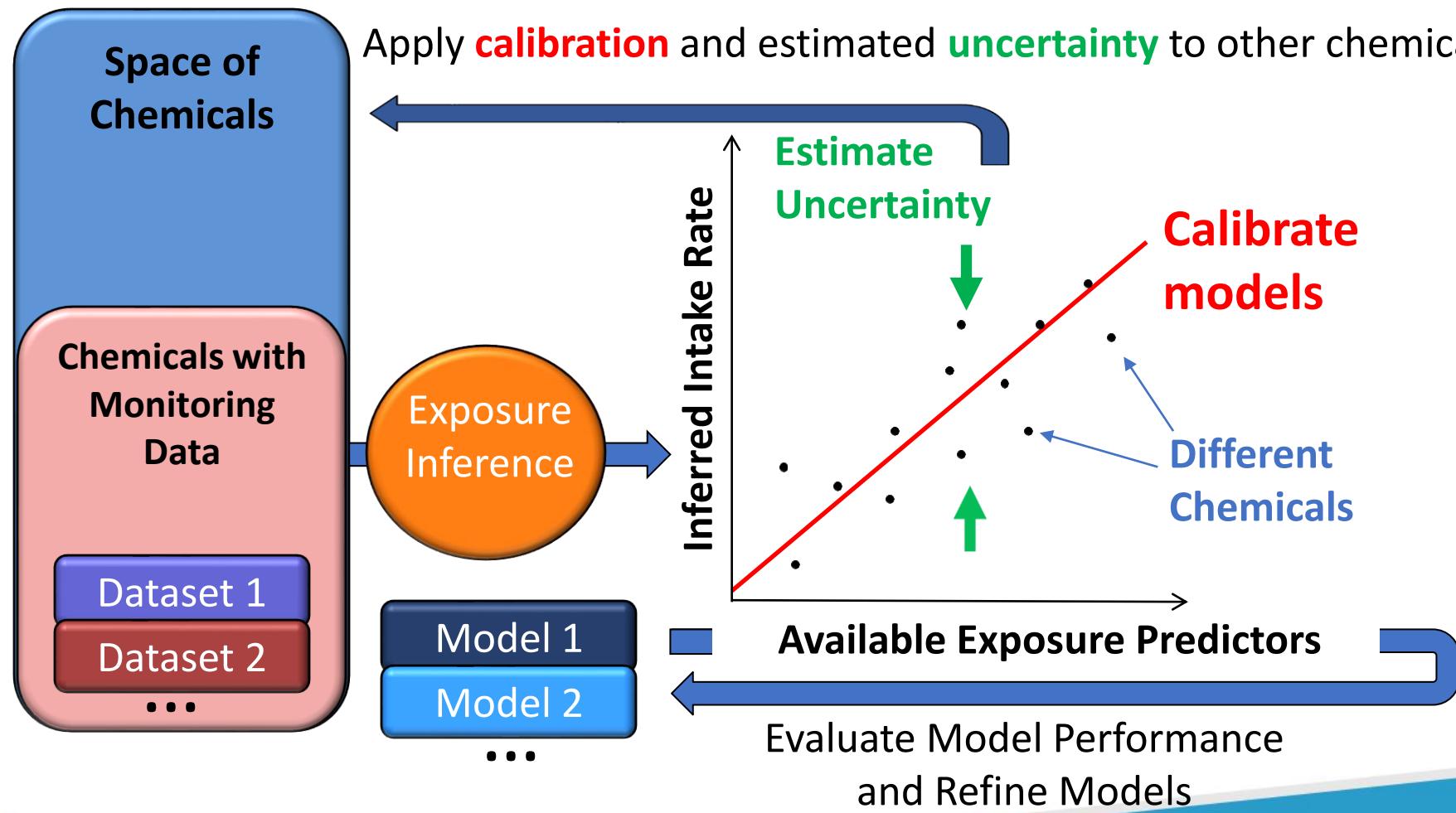


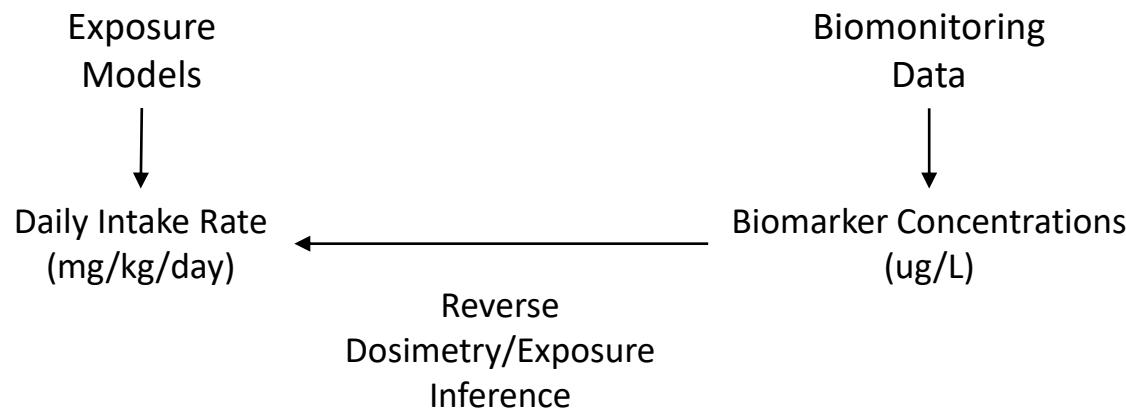
Exposure Pathway Models

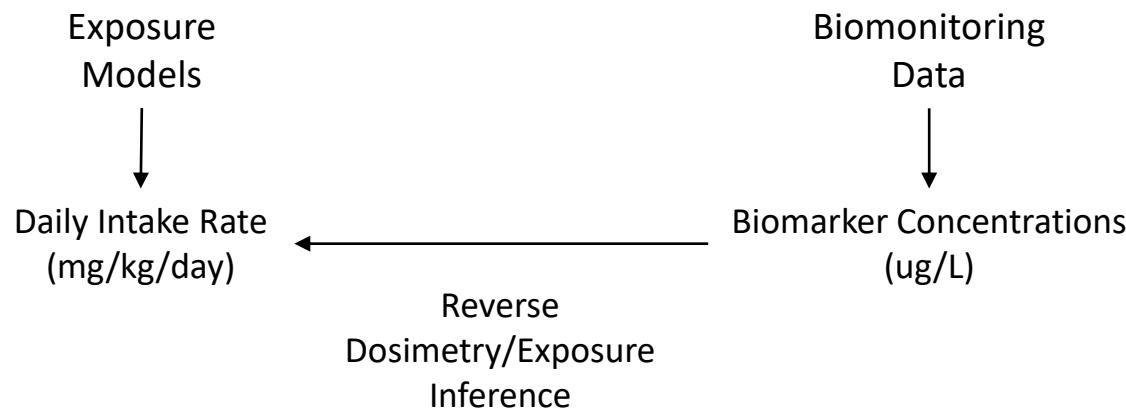


Ring et al., 2019


Systematic Empirical Evaluation of Models (SEEM)


Systematic Empirical Evaluation of Models (SEEM)


Systematic Empirical Evaluation of Models (SEEM)


Systematic Empirical Evaluation of Models (SEEM)

How do we use biomonitoring data to evaluate high-throughput exposure models?

How do we use biomonitoring data to evaluate high-throughput exposure models?

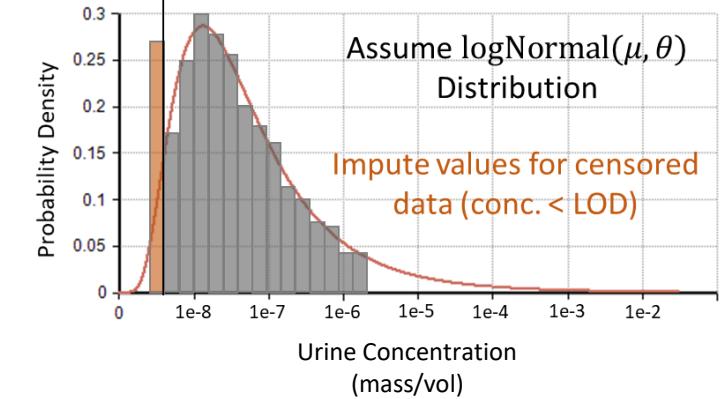
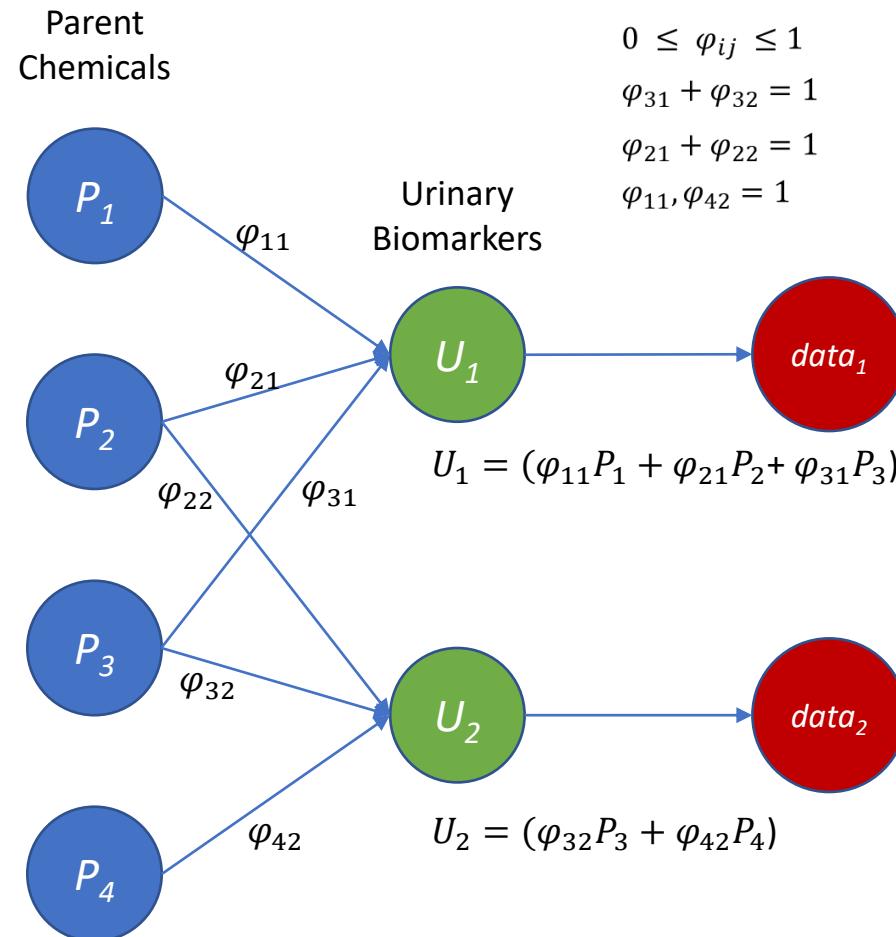
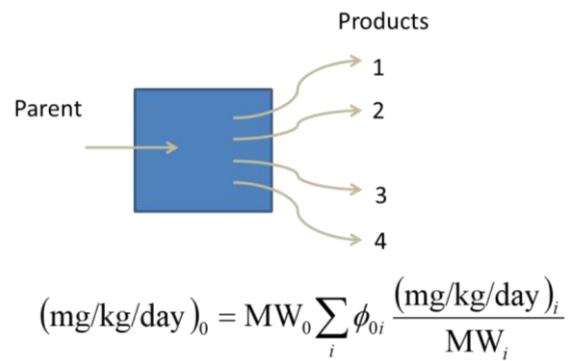
Environmental Science & Technology Article
pubs.acs.org/est

High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project

John F. Wambaugh,^{*,†} R. Woodrow Setzer,[†] David M. Reif,[†] Sumit Gangwal,[†] Jade Mitchell-Blackwood,[‡] Jon A. Arnot,^{§,||} Olivier Joliet,[§] Alicia Frame,^{†,#} James Rabinowitz,[†] Thomas B. Knudsen,[†] Richard S. Judson,[†] Peter Egeghy,[‡] Daniel Vallero,[‡] and Elaine A. Cohen Hubal[†]

^{*}National Center for Computational Toxicology, and [†]National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
[§]Arnot Research and Consulting (ARC), 36 Sprott Avenue, Toronto, Ontario M4M 1W4, Canada
^{||}Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
[†]Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
[#]Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37830, United States

Supporting Information




ABSTRACT: The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals. High-throughput screening (HTS) for biological activity allows the ToxCast research program to prioritize chemical inventories for potential hazard. Similar capabilities for estimating exposure potential would support

ExpoCast

Wambaugh *et al.*, 2013

Problem Description

Problem Description

Reverse toxicokinetics (tk) approach

- Assume individuals are at steady-state equilibrium due to a constant rate of exposure to one or more parent compounds (*Lakind & Naiman, 2008; Mage et al., 2004; Tan et al., 2007*)
- Estimate the rate at which chemicals are filtered into urine by the kidneys
 - Chemicals are assumed to be (mainly) cleared by the kidneys via glomerular filtration, which can be estimated by creatinine excretion rates (CER)
 - Creatinine correction
 - When available, use urine flow data
 - CER (g_{creatinine}/day) = creatinine conc. (g/mL) * urine flow rate (mL/min) * 24*60 (min/day)
 - When not available, model daily excretion
 - Is a function of muscle mass, which is influenced by sex, race, age, and bodyweight

How do we model this problem?

Model Needs

- Handle censored data
- Determine optimal parent-metabolite fractions (φ 's)
- Incorporate distribution information for urine concentrations
- Include confidence assessment
 - How certain are we of our results?

How do we model this problem?

Model Needs

- Handle censored data
- Determine optimal parent-metabolite fractions (φ 's)
- Incorporate distribution information for urine concentrations
- Include confidence assessment
 - How certain are we of our results?

Bayesian Inference

- Allows easy incorporation of censored data
- Can integrate prior information about the system
 - Considers what we already know and extrapolates the rest from the accompanying data
- Returns a distribution of parameter values that aids in downstream statistical analyses

Bayesian Inference

- A method of statistical inference using Bayes' theorem

$$P(H | E) = \frac{P(E | H) \cdot P(H)}{P(E)}$$

H = hypothesis, P(H) = prior probability, E = evidence, P(H|E) = posterior probability, P(E|H) = likelihood, P(E) = model evidence

- Uses prior knowledge (prior distribution) in order to estimate posterior probabilities
- Models describe the problem as a directed graph where nodes are parameters and data, and edges denote dependencies between parameters and data
- Employs Markov Chain Monte Carlo (MCMC)
 - A method for integrating over probability space to perform a Bayesian analysis (Gelman et al., 2013)
 - Converges on the “posterior” space where all iterations are equally likely and Markov chain iterations represent samples from the posterior distribution
- Can be implemented in R using JAGS (<http://mcmc-jags.sourceforge.net/>) and Stan (<https://mc-stan.org/>) programming via the packages rjags and rstan

Bayesian Inference

- A method of statistical inference using Bayes' theorem

$$P(H | E) = \frac{P(E | H) \cdot P(H)}{P(E)}$$

H = hypothesis, P(H) = prior probability, E = evidence, P(H|E) = posterior probability, P(E|H) = likelihood, P(E) = model evidence

- Uses prior knowledge (prior distribution) in order to estimate posterior probabilities
- Models describe the problem as a directed graph where nodes are parameters and data, and edges denote dependencies between parameters and data
- Employs Markov Chain Monte Carlo (MCMC)
 - A method for integrating over probability space to perform a Bayesian analysis (Gelman et al., 2013)
 - Converges on the “posterior” space where all iterations are equally likely and Markov chain iterations represent samples from the posterior distribution
- Can be implemented in R using JAGS (<http://mcmc-jags.sourceforge.net/>) and Stan (<https://mc-stan.org/>) programming via the packages `rjags` and `rstan`

```
model{  
  ## Model the parent exposures  
  for (i in 1:N) {  
    IP[i] ~ dnorm(IPmu, tau.V)  
    P[i]<- exp(IP[i])  
  }  
  IPmu ~ dnorm(0, 0.001)  
  
  ## code so that prior for sd(log(P[i])) is half-Cauchy(25)  
  sd.dum ~ dt(0,1/625,1)  
  sd.V <- abs(sd.dum)  
  tau.V <- 1/pow(sd.V,2)  
  
  ## Link the unobserved parent exposure to the observed (but censored) metabolites.  
  IU <- log(t(Phi)) %*% P  
  ## tau.se <- 1/(se * se)  
  for (j in 1:Mn) {  
    ly[j] ~ dnorm(IU[j],tau.se[j])  
  }  
  for (j in (Mn+1):M) {  
    Pralod[j - Mn] <- 1 - pnorm(lod[j - Mn], IU[j], tau[j - Mn])  
    ly[j] ~ dbin(Pralod[j - Mn], SS[j - Mn])  
  }  
  ## Estimate mixmu, mixtau, mixpi externally, and input as data.  
  for (j in 1:(M - Mn)) {  
    lsd[j] ~ dnormmix(mixmu, mixtau, mixpi)  
    tau[j] <- exp(-2*lsd[j])  
  }  
  
  for (i in 1:NBranches)  
  {  
    phi[Bstart[i]:Bstop[i]] ~ ddirch(Alpha[Bstart[i]:Bstop[i]])  
  }  
  
  for (i in 1:Ndelta)  
  {  
    Phi[ndx[i,1],ndx[i,2]] <- phi[i]  
  }  
}
```

Inferring Exposure from NHANES Data

Environmental Science & Technology

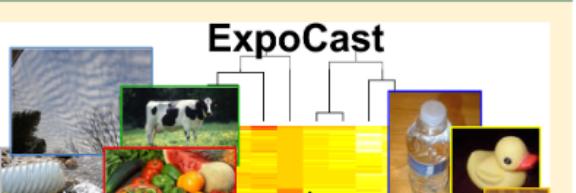
Article
pubs.acs.org/est

High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project

John F. Wambaugh,^{*,†} R. Woodrow Setzer,[†] David M. Reif,[†] Sumit Gangwal,[†] Jade Mitchell-Blackwood,[‡] Jon A. Arnot,^{§,||} Olivier Joliet,[⊥] Alicia Frame,^{†,#} James Rabinowitz,[†] Thomas B. Knudsen,[†] Richard S. Judson,[†] Peter Egeghy,[‡] Daniel Vallero,[‡] and Elaine A. Cohen Hubal[†]

[†]National Center for Computational Toxicology, and [‡]National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States

[§]Arnot Research and Consulting (ARC), 36 Sproat Avenue, Toronto, Ontario M4M 1W4, Canada


^{||}Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada

[⊥]Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States

[#]Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37830, United States

Supporting Information

ABSTRACT: The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals. High-throughput screening (HTS) for biological activity allows the ToxCast research program to prioritize chemical inventories for potential hazard. Similar capabilities for estimating exposure potential would support

ExpoCast

Wambaugh *et al.*, 2013

Inferring Exposure from NHANES Data

High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project

John F. Wambaugh,^{*,†} R. Woodrow Setzer,[†] David M. Reif,[†] Sumit Gangwal,[†] Jade Mitchell,[†] Jon A. Arnot,^{§,||} Olivier Joliet,[†] Alicia Frame,^{†,#} James Rabinowitz,[†] Thomas B. Knudsen,[†] Richard S. Judson,[†] Peter Egeghy,[‡] Daniel Vallero,[‡] and Elaine A. Cohen Hubal[†]

[†]National Center for Computational Toxicology, and [‡]National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States

[§]Arnot Research and Consulting (ARC), 36 Sprott Avenue, Toronto, Ontario M4M 1W4, Canada

^{||}Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1A4, Canada

[#]Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States

[#]Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37830, United States

Supporting Information

ABSTRACT: The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals. High-throughput screening (HTS) for biological activity allows the ToxCast research program to prioritize chemical inventories for potential hazard. Similar capabilities for estimating exposure potential would support

Wambaugh *et al.*, 2013

Journal of Exposure Science & Environmental Epidemiology

www.nature.com/jes

ARTICLE

Bayesian inference of chemical exposures from NHANES urine biomonitoring data

Zachary Stanfield ¹, R. Woodrow Setzer¹, Victoria Hull^{1,2}, Risa R. Sayre¹, Kristin K. Isaacs¹ and John F. Wambaugh¹

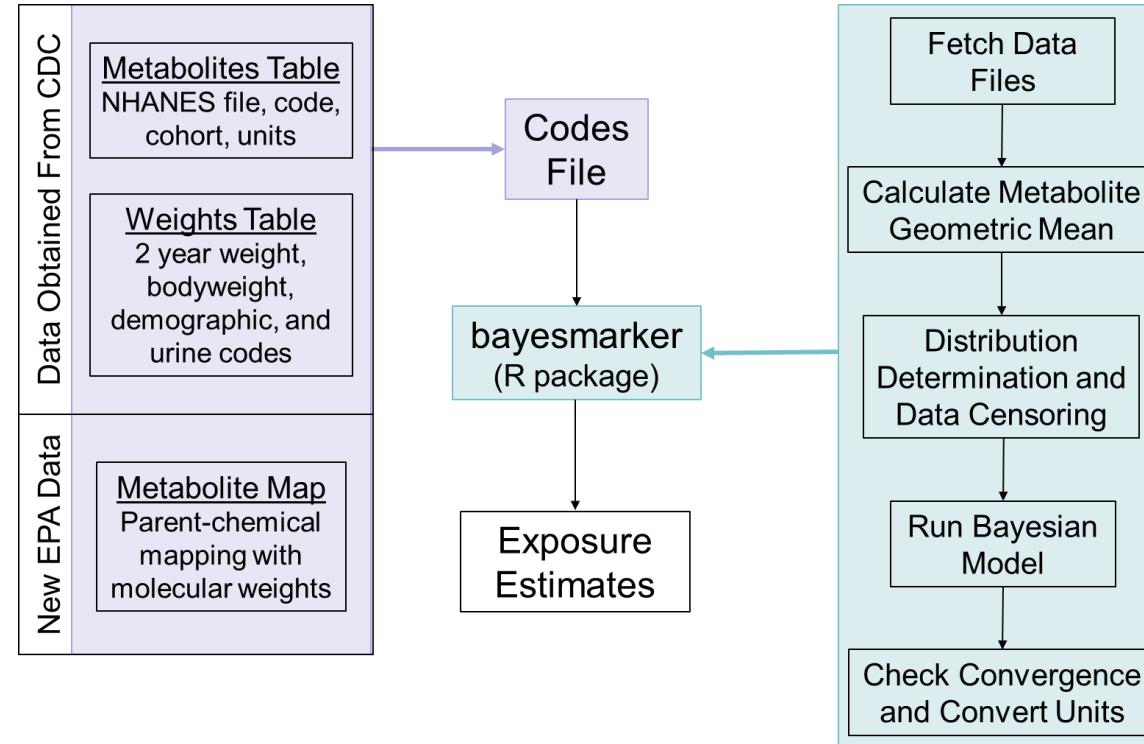
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022

BACKGROUND: Knowing which environmental chemicals contribute to metabolites observed in humans is necessary for meaningful estimates of exposure and risk from biomonitoring data.

OBJECTIVE: Employ a modeling approach that combines biomonitoring data with chemical metabolism information to produce chemical exposure intake rate estimates with well-quantified uncertainty.

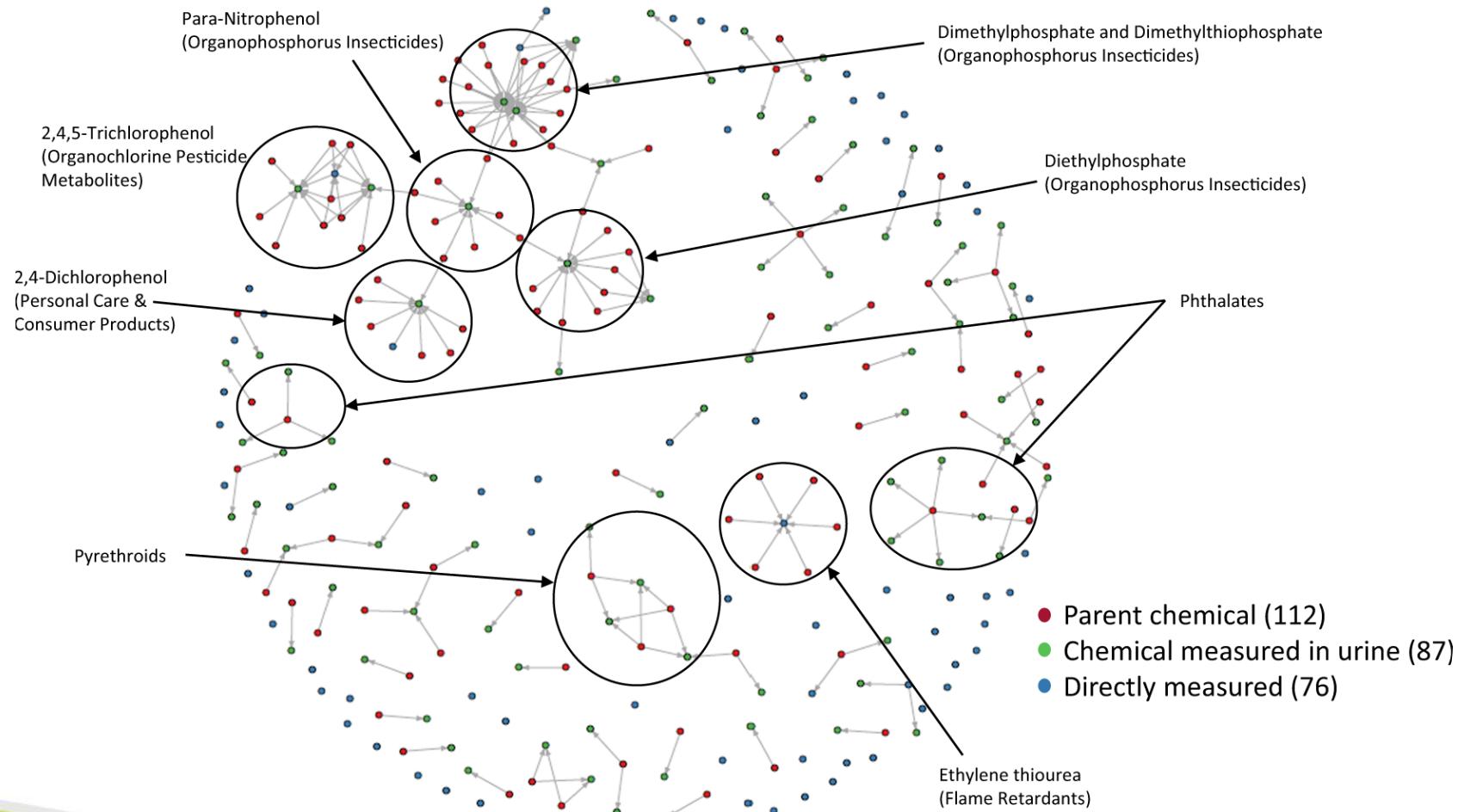
METHODS: Bayesian methodology was used to infer ranges of exposure for parent chemicals of biomarkers measured in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). Metabolites were probabilistically linked to parent chemicals using the NHANES reports and text mining of PubMed abstracts.

RESULTS: Chemical exposures were estimated for various population groups and translated to risk-based prioritization using toxicokinetic (TK) modeling and experimental data. Exposure estimates were investigated more closely for children aged 3 to 5 years, a population group that debuted with the 2015–2016 NHANES cohort.


SIGNIFICANCE: The methods described here have been compiled into an R package, bayesmarker, and made publicly available on GitHub. These inferred exposures, when coupled with predicted toxic doses via high throughput TK, can help aid in the identification of public health priority chemicals via risk-based bioactivity-to-exposure ratios.

Keywords: Biomonitoring, Child Exposure/Health, Exposure Modeling, New Approach Methodologies (NAMs)

Journal of Exposure Science & Environmental Epidemiology; <https://doi.org/10.1038/s41370-022-00459-0>


Stanfield *et al.*, 2022

The bayesmarker R Package

<https://github.com/USEPA/CompTox-HumanExposure-bayesmarker>

Parent-Metabolite Network

- Wambaugh et al., 2013
 - 68 metabolites linked to 109 parent chemicals
- Stanfield et al., 2022
 - 151 metabolites linked to 179 parent chemicals (270 edges)
 - New metabolites curated by Victoria Hull
 - Evidence added from:
 - NHANES reports
 - Text mining of PubMed abstracts using chemical synonyms and metabolism keywords (Risa Sayre)

NHANES Overview

National Center for Health Statistics

CDC > NCHS

 National Health and Nutrition Examination Survey [Print](#)

Survey Participants

If you were selected, learn more about participating

Survey Data and Documentation

Access data, documentation & response rates

Publications and Products

Data Analysis Tutorials

<https://www.cdc.gov/nchs/nhanes/index.htm>

NHANES Overview

The screenshot shows the NHANES website's 'Questionnaires, Datasets, and Related Documentation' page. The left sidebar includes links for 'About NHANES', 'What's New', 'Webinar', 'Survey Participants', 'Biospecimen Program', 'New Content and Proposal Guidelines', 'Publications and Products', and 'Tutorial'. The 'Questionnaires, Datasets, and Related Documentation' link is highlighted with a red box. The main content area features a 'Survey Methods' section with a document icon, a 'Search Variables' section with a magnifying glass icon, and a large 'Continuous NHANES' section displaying a grid of survey years from 1999-2000 to 2021-2023.

National Center for Health Statistics

CDC > NCHS

National Health and Nutrition Examination Survey

About NHANES +

What's New +

Webinar

Questionnaires, Datasets, and Related Documentation

Survey Participants +

Biospecimen Program +

New Content and Proposal Guidelines

Publications and Products +

Tutorial

Print

Questionnaires, Datasets, and Related Documentation

Survey Methods and Analytic Guidelines

Data User Agreement

Search Variables

Frequently Asked Questions

All Continuous NHANES +

NHANES 08/2021-08/2023 +

NHANES 2017-March 2020 +

NHANES 2019-2020 +

NHANES 2017-2018 +

NHANES 2015-2016 +

NHANES 2013-2014 +

NHANES 2011-2012 +

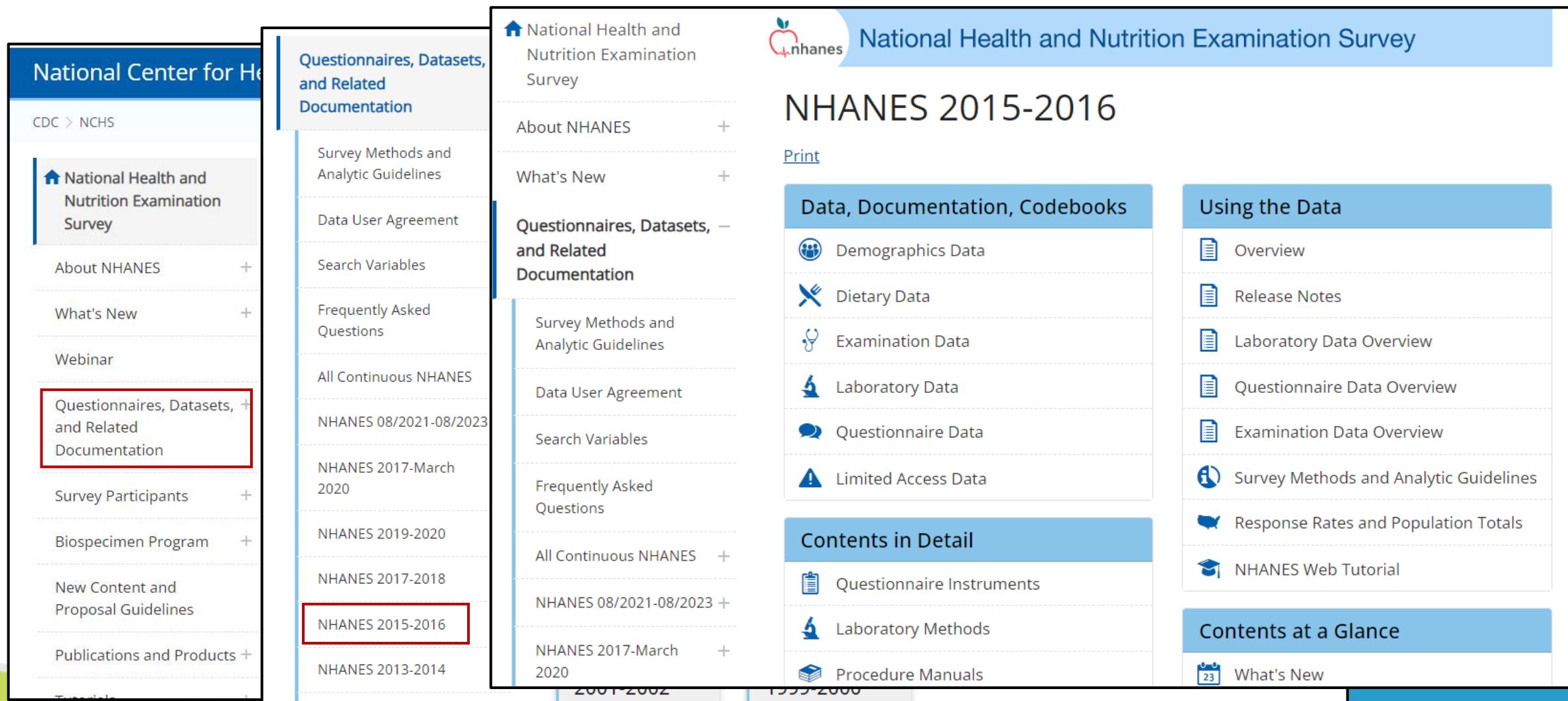
NHANES 2009-2010 +

NHANES 2007-2008 +

NHANES 2005-2006 +

NHANES 2001-2002 +

Survey Methods
Plan & Operations, Sample Design, Estimation & Weighting Procedures, Analytic Guidelines, etc.


Search Variables
Simple keyword search for Continuous NHANES (1999 and on) variables

Continuous NHANES

NHANES 08/2021-08/2023	NHANES 2017-March 2020 Pre-Pandemic Data	NHANES 2019-2020
NHANES 2017-2018	NHANES 2015-2016	NHANES 2013-2014
NHANES 2009-2010	NHANES 2007-2008	NHANES 2005-2006
NHANES 2001-2002	NHANES 1999-2000	

<https://www.cdc.gov/nchs/nhanes/index.htm>

NHANES Overview

The image shows a screenshot of the National Health and Nutrition Examination Survey (NHANES) website for the 2015-2016 survey period. The page is titled "NHANES 2015-2016" and features a navigation bar with links for "Data, Documentation, Codebooks", "Using the Data", "Contents in Detail", and "Contents at a Glance". The main content area displays various data categories with corresponding icons: Demographics Data (person icon), Dietary Data (fork and knife icon), Examination Data (stethoscope icon), Laboratory Data (microscope icon), Questionnaire Data (speech bubble icon), and Limited Access Data (warning sign icon). The page also includes sections for "Print", "About NHANES", "What's New", "Questionnaires, Datasets, and Related Documentation", "Survey Methods and Analytic Guidelines", "Data User Agreement", "Search Variables", "Frequently Asked Questions", and "All Continuous NHANES". The "Questionnaires, Datasets, and Related Documentation" and "NHANES 2015-2016" sections are highlighted with red boxes. The URL <https://www.cdc.gov/nchs/nhanes/index.htm> is visible at the bottom of the page.

<https://www.cdc.gov/nchs/nhanes/index.htm>

NHANES Overview

National Health and Nutrition Examination Survey

2015-2016 Data Documentation, Codebook, and Frequencies

Demographic Variables and Sample Weights (DEMO_I)

Data File: DEMO_I.xpt

First Published: September 2017

Last Revised: NA

Component Description

The demographics file provides individual, family, and household-level information on the following topics:

- Survey participant's household interview and examination status;
- Interview and examination sample weights;
- Masked variance units;
- Language of questionnaires used for the interviews conducted in the household and in the mobile examination center;
- Use of proxy or interpreter during the interviews;
- The six-month time period when the examination was performed;
- Pregnancy status;
- Household and family income;
- Household and family sizes;
- Household composition: the number of children (aged 5 years or younger and 6-17 years old), and adults aged 60 years or older, in the household;
- Demographic information about the household reference person; and
- Other selected demographic information, such as gender, age, race/Hispanic origin, education, marital status, military service status, country of birth, citizenship, and years of U.S. residence.

The format and coding for all the variables included in the 2015-2016 NHANES demographics file are identical to those released for the 2013-2014 survey cycle.

Similar to the 2011-2014 cycle, the sample design for NHANES 2015-2016 also includes an

TABLE OF CONTENTS

- Component Description
- Eligible Sample
- Interview Setting and Mode of Administration
- Quality Assurance & Quality Control
- Data Processing and Editing
- Analytic Notes
- References
- Codebook
 - SEQN - Respondent sequence number
 - SDDSRVYR - Data release cycle
 - RIDSTATR - Interview/Examination status
 - RIAGENDR - Gender
 - RIDAGEYR - Age in years at screening
 - RIDAGEMN - Age in months at screening - 0 to 24 mos
 - RIDRETH1 - Race/Hispanic origin
 - RIDRETH3 - Race/Hispanic origin w/ NH Asian
 - RIDEXMON - Six month time period
 - RIDEXAGM - Age in months at exam - 0 to 19 years
 - DMQMILIZ - Served active duty in US Armed Forces
 - DMQADFC - Served in a foreign country
 - DMDBORN4 - Country of birth
 - DMDCITZN - Citizenship status
 - DMDYRSUS - Length of time in US
 - DMDEDUC3 - Education level - Children/Youth 6-19
 - DMDEDUC2 - Education level - Adults 20+

Demographic Data

NHANES Overview

National Health
2015-2016 Data Docu
Demographic Variables
Data File: DEMO_I.xpt
First Published: September 2015
Last Revised: NA

Component Description

The demographics file is used to collect information on the following topics:

- Survey participant's gender
- Interview and examination location
- Masked variance unit
- Language of questionnaire
- Mobile examination center
- Use of proxy or interviewee
- The six-month time period
- Pregnancy status
- Household and family size
- Household and family composition (old), and adults age
- Demographic information
- Other selected demographic information (education, marital status, U.S. residence)

The format and coding of the demographics file are identical to those of the 2011-2014 cycle.

National Health and Nutrition Examination Survey

2015-2016 Data Documentation, Codebook, and Frequencies

Body Measures (BMX_I)

Data File: BMX_I.xpt

First Published: September 2017

Last Revised: NA

Component Description

NHANES body measures data are used to monitor trends in infant and child growth, to estimate the prevalence of overweight and obesity in U.S. children, adolescents, and adults, and to examine the associations between body weight and the health and nutritional status of the U.S. population. The new collected Sagittal Abdominal Diameter (SAD) data will be used to establish population-based reference ranges, and to improve the health risk assessments associated with body weight and obesity.

The measurements and target age groups for the NHANES 2015–2016 body measures component are as follows:

- Weight: All ages
- Head circumference: birth through 6 months of age
- Recumbent length: birth through 47 months of age
- Standing height: 2 years and older
- Upper leg length: 8 years and older
- Upper arm length: 2 months of age and older
- Mid-upper arm circumference: 2 months of age and older
- Waist circumference: 2 years of age and older
- Sagittal abdominal diameter: 8 years of age and older

Eligible Sample

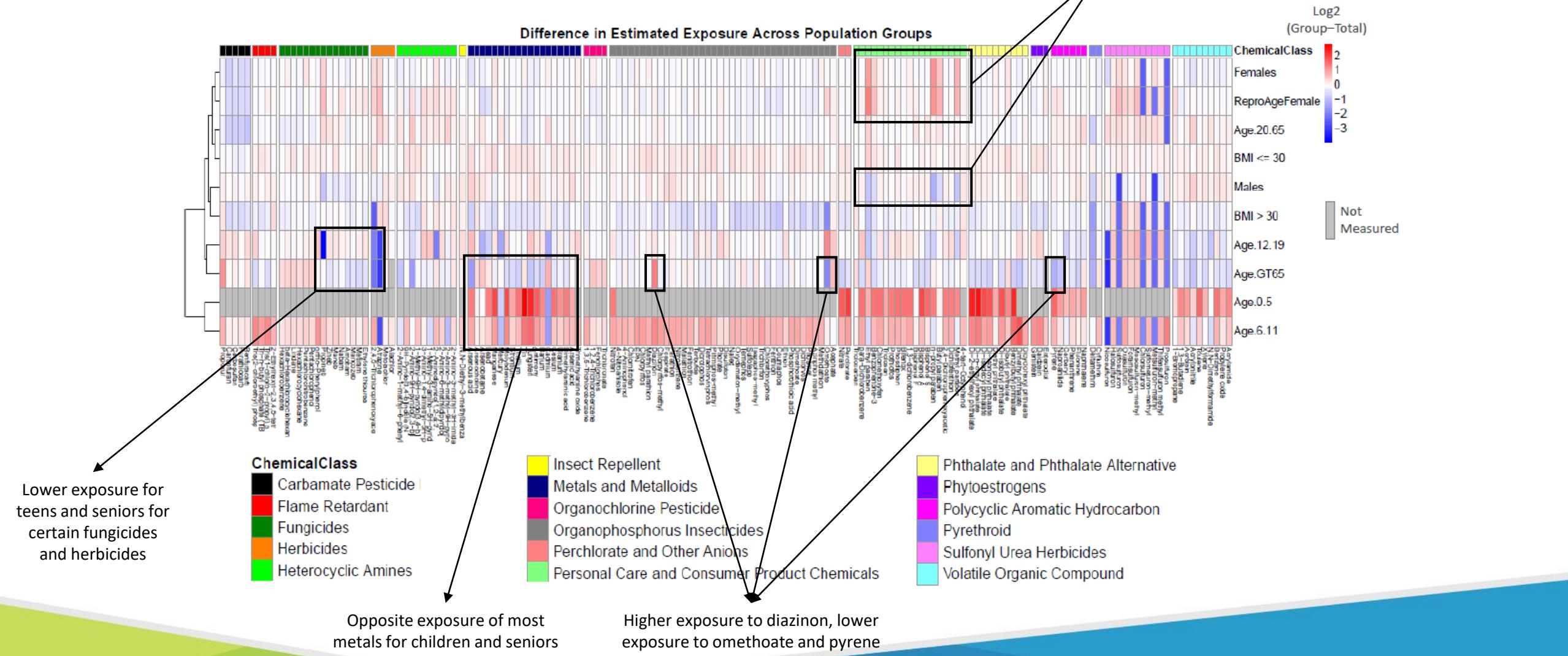
All survey participants were eligible for the body measures component. Pregnant women and those who were pregnant during the survey were excluded.

Similar to the 2011-2014 cycle, the sample design for NHANES 2015-2016 also includes an

TABLE OF CONTENTS

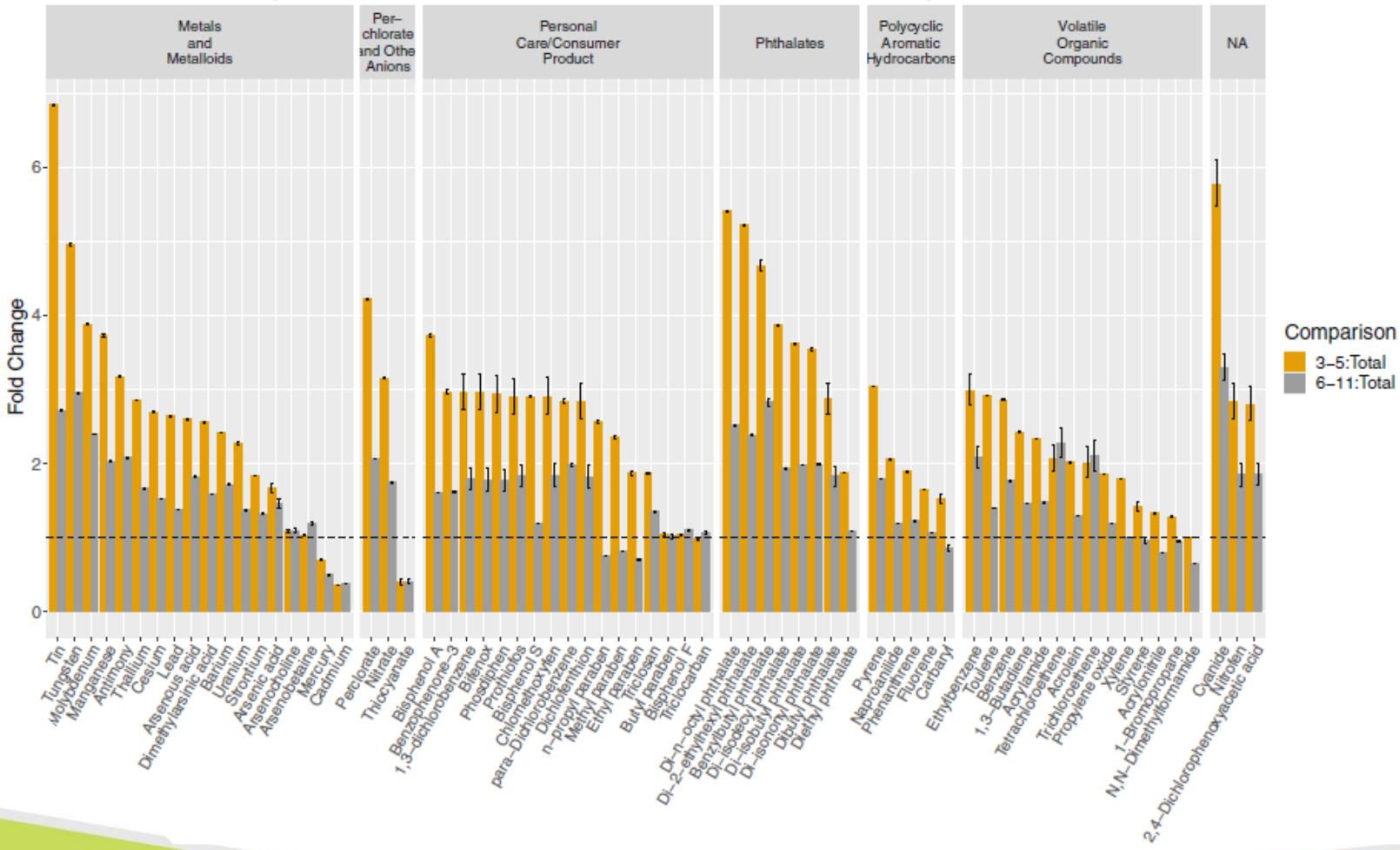
- Component Description
- Eligible Sample
- Protocol and Procedure
- Quality Assurance & Quality Control
- Data Processing and Editing
- Analytic Notes
- References
- Codebook
 - SEQN - Respondent sequence number
 - BMDSTATS - Body Measures Component Status Code
 - BMXWT - Weight (kg)
 - BMIWT - Weight Comment
 - BMXRECUM - Recumbent Length (cm)
 - BMIRECUM - Recumbent Length Comment
 - BMXHEAD - Head Circumference (cm)
 - BMIHEAD - Head Circumference Comment
 - BMXHT - Standing Height (cm)
 - BMIHT - Standing Height Comment
 - BMXBMI - Body Mass Index (kg/m²)
 - BMDBMIC - BMI Category - Children/Youth
 - BMXLEG - Upper Leg Length (cm)
 - BMILEG - Upper Leg Length Comment
 - BMXARML - Upper Arm Length (cm)
 - BMIARML - Upper Arm Length Comment
 - BMXARMC - Arm Circumference (cm)
 - BMIARMC - Arm Circumference Comment
 - BMXWAIST - Waist Circumference (cm)
 - BMIWAIST - Waist Circumference Comment

Examination Data


NHANES Overview

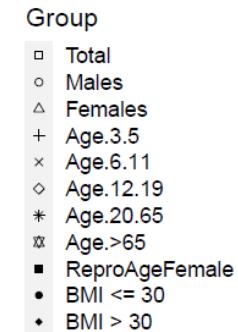
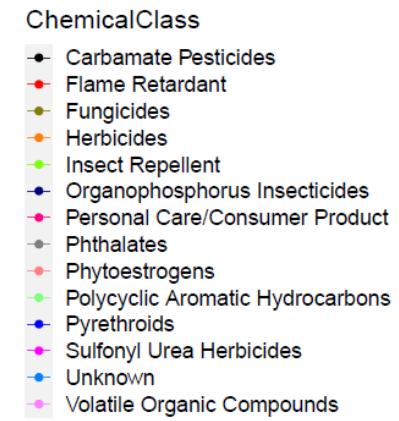
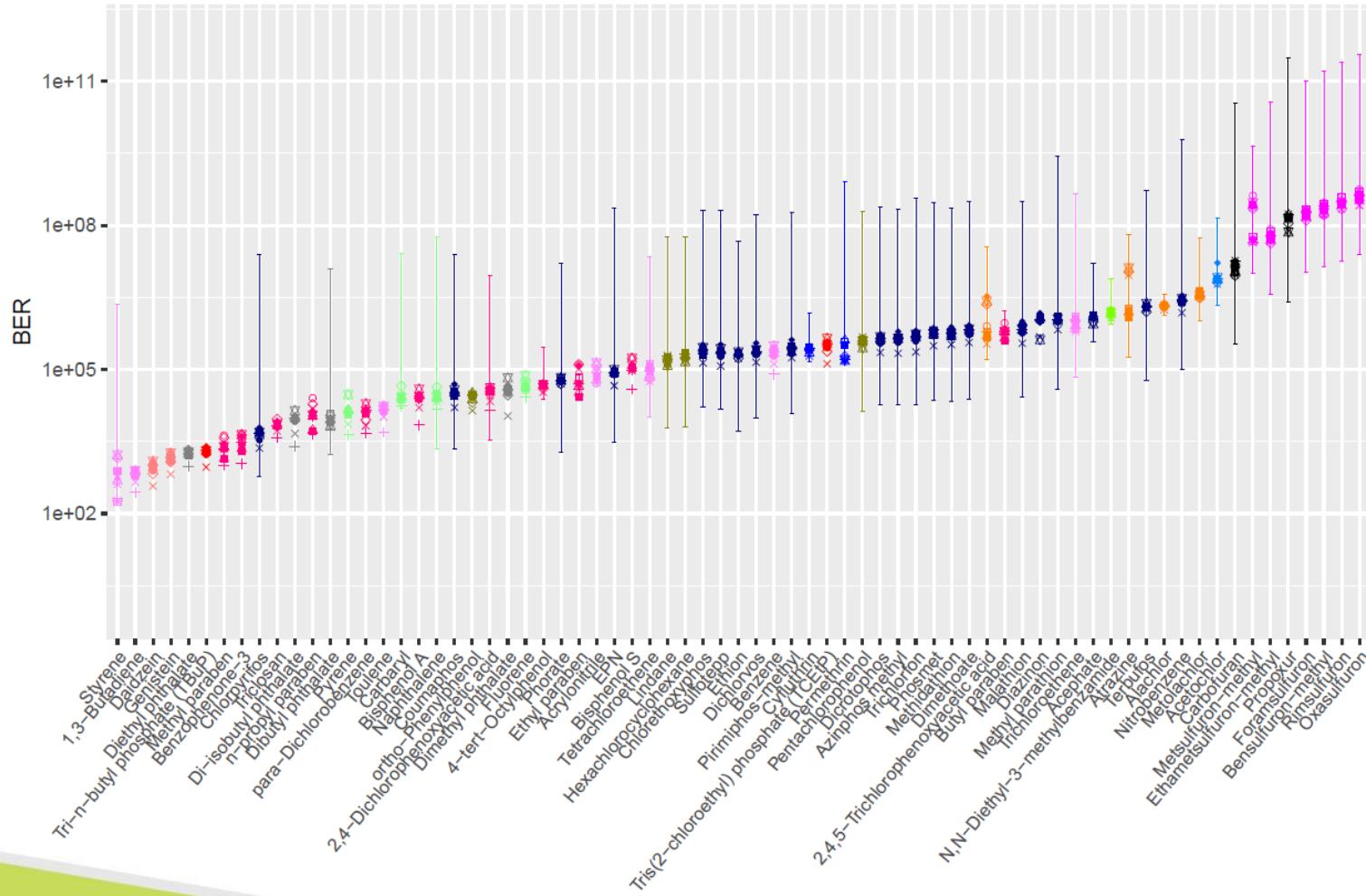
<p>National Health and Nutrition Examination Survey</p> <p>2015-2016 Data Documentation, Codebook, and Frequencies</p> <p>Personal Care and Consumer Product Chemicals and Metabolites (EPHPP_I)</p> <p>Data File: EPHPP_I.xpt</p> <p>First Published: January 2019</p> <p>Last Revised: NA</p> <hr/> <p>Component Description</p> <p>The demographics file includes the following topics:</p> <ul style="list-style-type: none">• Survey participant's gender• Interview and examination• Masked variance units• Language of questionnaire• Mobile examination center• Use of proxy or interview• The six-month time period• Pregnancy status• Household and family• Household and family size• Household composition (old), and adults age 18 and older• Demographic information• Other selected demographic information (e.g., education, marital status, U.S. residence) <p>The format and coding for this file are identical to those for the 2011-2014 cycle. All survey participants were eligible for the body measures component. Pregnant women and those who were not pregnant were included in the sample.</p> <p>Eligible Sample</p> <p>All survey participants were eligible for the body measures component. Pregnant women and those who were not pregnant were included in the sample. Similar to the 2011-2014 cycle, the sample design for NHANES 2015-2016 also includes an</p>	<p>National Health and Nutrition Examination Survey</p> <p>2015-2016 Data Documentation, Codebook, and Frequencies</p> <p>Personal Care and Consumer Product Chemicals and Metabolites (EPHPP_I)</p> <p>Data File: BMX_I.xpt</p> <p>First Published: September 2018</p> <p>Last Revised: NA</p> <hr/> <p>Component Description</p> <p>NHANES body measures estimate the prevalence and to examine the association of environmental chemicals with the U.S. population. The measurements and associated with body weight are as follows:</p> <ul style="list-style-type: none">• Weight: All ages• Head circumference: All ages• Recumbent length: All ages• Standing height: 2 years and older• Upper leg length: 8 years and older• Upper arm length: 2 years and older• Mid-upper arm circumference: All ages• Waist circumference: All ages• Sagittal abdominal diameter: All ages <p>Bisphenol A (BPA) is used in the manufacture of polycarbonate plastics and epoxy resins, which can be used in protective coatings on food containers and as composites and sealants in dentistry. Concerns over potential health risks of BPA have led to restrictions on the use of BPA in certain baby and children products (U.S. Food and Drug Administration 2014). BPA alternatives, such as bisphenol S (BPS, 4,4'-sulfonyldiphenol) and bisphenol F (BPF, 4,4'-dihydroxydiphenylmethane), have been introduced in the market to replace BPA (Liao et al. 2012). Some phenols are used as sunscreen agents for skin protection, and as UV filters in cosmetic products and plastics to improve stability (e.g., benzophenone-3). Phenols are also used as bactericides (e.g., triclosan) in soap and are found in other personal care products. Other chlorophenols have been used in the wood preservation industry as intermediates in the production of pesticides, and as disinfectants or fungicides for industrial and indoor home use. The manufacture of certain chlorinated aromatic compounds can also produce chlorophenols as byproducts.</p> <p>Parabens, a group of alkyl (e.g., methyl, ethyl, propyl, butyl) esters of p-hydroxybenzoic acid, are widely used as antimicrobial preservatives in personal care products, and can also</p> <p>TABLE OF CONTENTS</p> <ul style="list-style-type: none">• Component Description• Eligible Sample• Description of Laboratory Methodology• Laboratory Method Files• Laboratory Quality Assurance and Monitoring• Data Processing and Editing• Analytic Notes• References• Codebook<ul style="list-style-type: none">• SEQN - Respondent sequence number• WTSB2YR - Subsample B weights• URXB3 - Urinary Benzophenone-3 (ng/mL)• URDBP3LC - Urinary Benzophenone-3 Comment Code• URXBPH - Urinary Bisphenol A (ng/mL)• URDBPHLC - Urinary Bisphenol A Comment Code• URXBPF - Urinary Bisphenol F (ng/mL)• URDBPFCLC - Urinary Bisphenol F Comment Code• URXBPS - Urinary Bisphenol S (ng/mL)• URDBPSLC - Urinary Bisphenol S Comment Code• URXTLC - Urinary Triclocarban (ng/mL)• URDTLCLC - Urinary Triclocarban Comment Code• URXTRS - Urinary Triclosan (ng/mL)• URDTRSCLC - Urinary Triclosan Comment Code• URXBUP - Butyl paraben (ng/mL)
---	--

Laboratory Data


Results

Demographic-specific Exposures

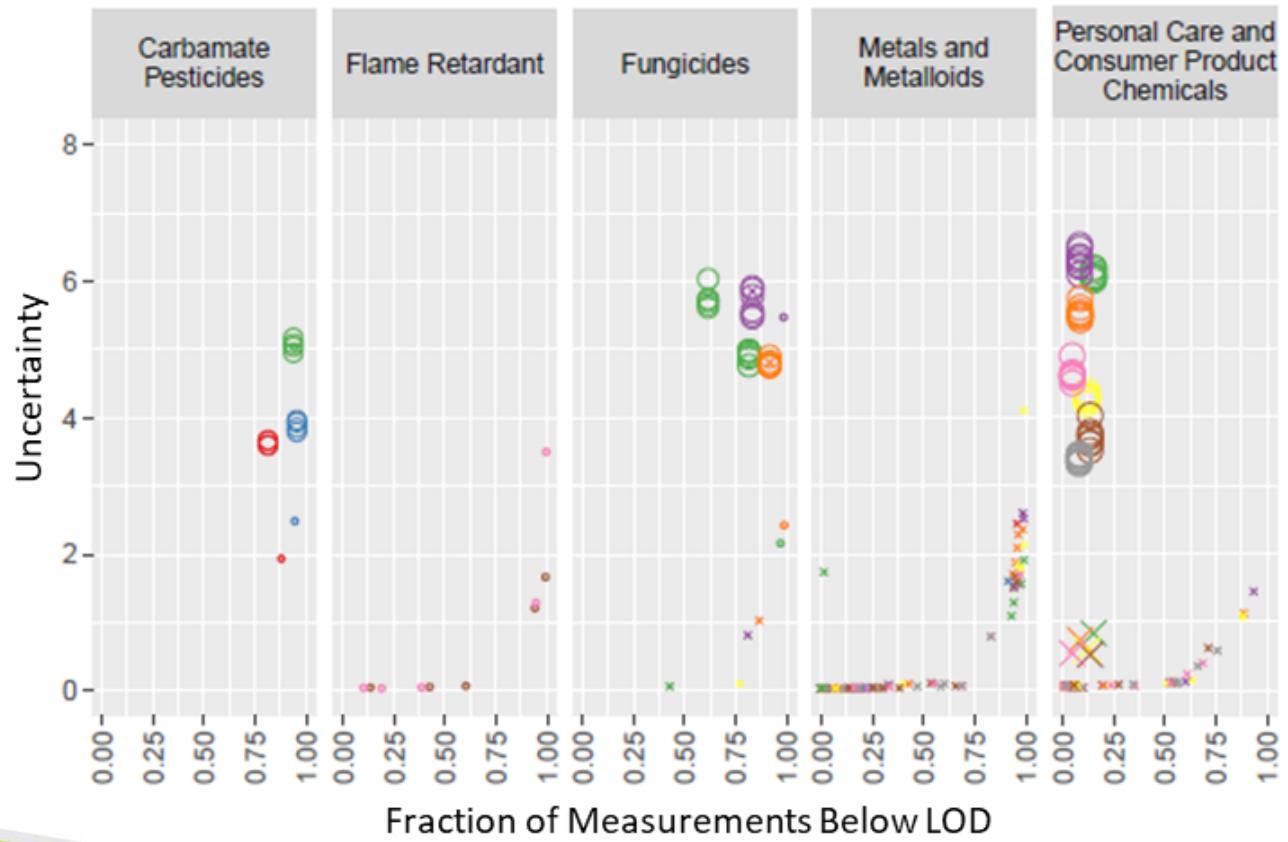
Examining Childhood Exposures (2015-2016)




Exposure Fold Change Comparison Between the Total Population and Children aged 3-5 and 6-11

- NHANES started monitoring urine metabolites in 3-5-year-olds in the 2015-2016 cohort
- Consistently higher exposure children aged 3-5, particularly for some metals and phthalates
- Noticeable difference for some personal care product chemicals between the two child populations compared to all individuals

Translating Exposure to Risk

Bioactivity:Exposure Ratio (BER) for Parent Chemicals of NHANES Metabolites



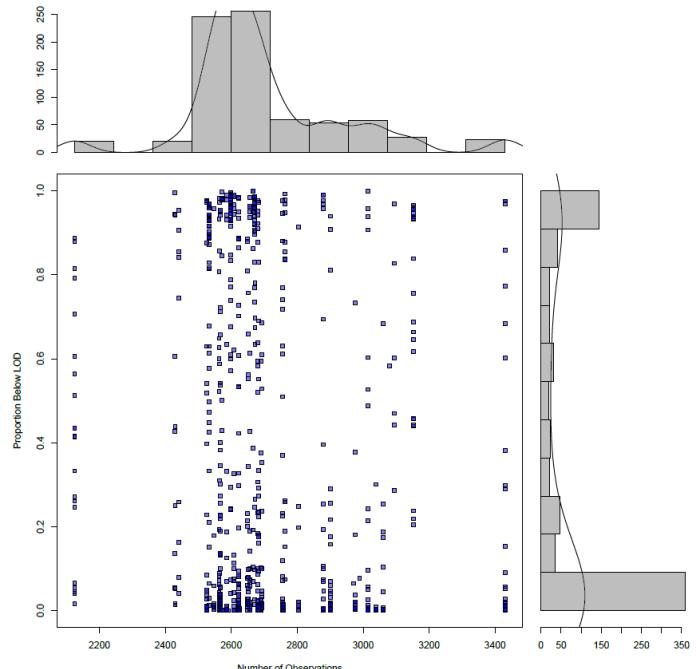
$$\frac{\text{Bioactivity}}{\text{Exposure}} = \frac{\text{HED}}{\text{Plasma Conc.}}$$

$$\frac{\text{calc_tkstats(oral rat LD50 * AF)}}{\text{calc_mc_css(inferred exposure)}}$$

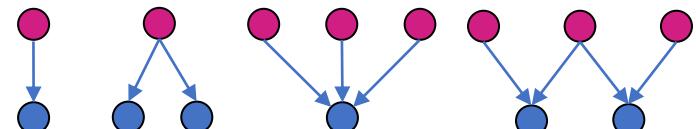
Mansouri et al., 2021
 Venman and Flaga, 1985
 Pearce et al., 2017

Contributors of Uncertainty

DirectlyMeasured

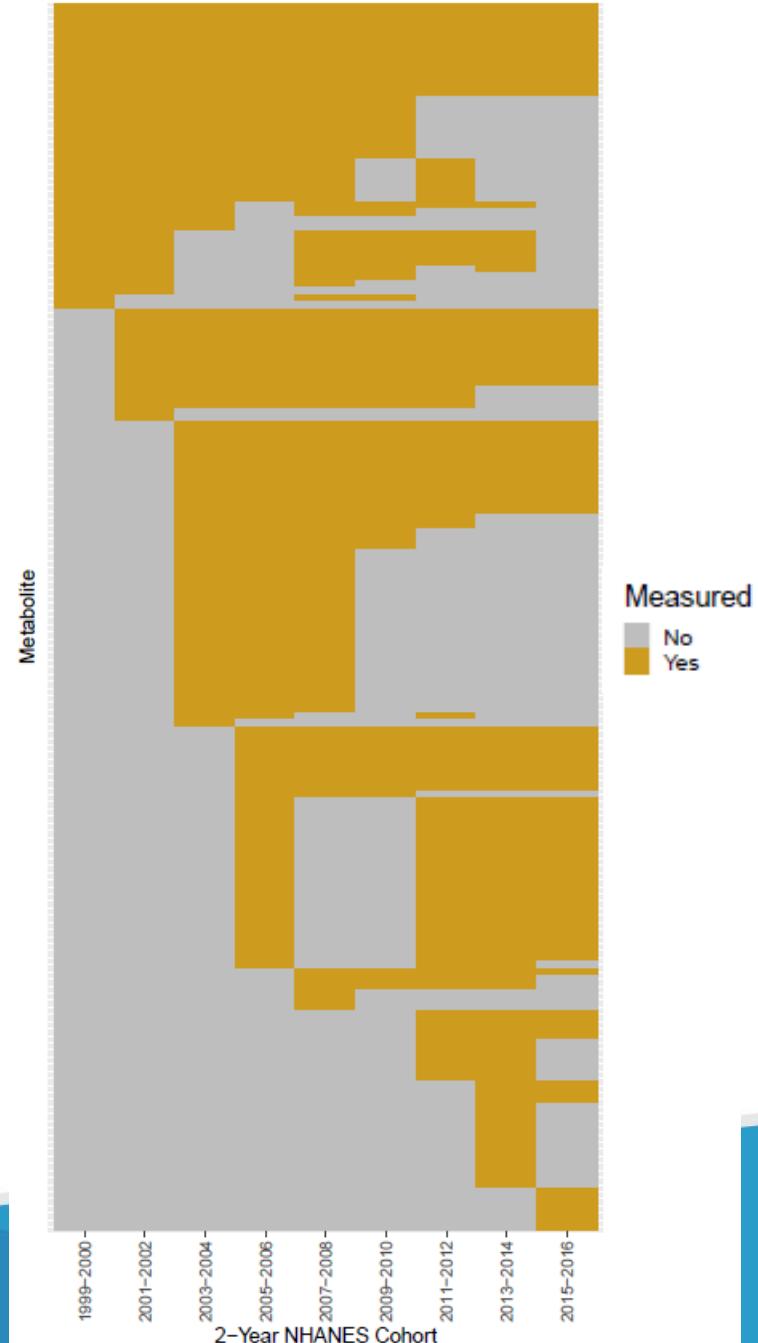

○ No
× Yes

NumberOfParents


● 1
● 5
● 10
● 15
● 18

Cohort

- 1999–2000
- 2001–2002
- 2003–2004
- 2005–2006
- 2007–2008
- 2009–2010
- 2011–2012
- 2013–2014
- 2015–2016



Metabolism

Making the Most of the NHANES Data

- The NHANES continuous survey cohorts can be compared or combined
- We can generate exposure estimates for each cohort individually
- We can compare changes in exposure for biomarkers measured in multiple cohorts

Research

A Section 508-conformant HTML version of this article
is available at <https://doi.org/10.1289/EHP12188>.

Characterizing Chemical Exposure Trends from NHANES Urinary Biomonitoring Data

Zachary Stanfield,¹ R. Woodrow Setzer,¹ Victoria Hull,^{1,2} Risa R. Sayre,^{1,2} Kristin K. Isaacs,¹ and John F. Wambaugh¹

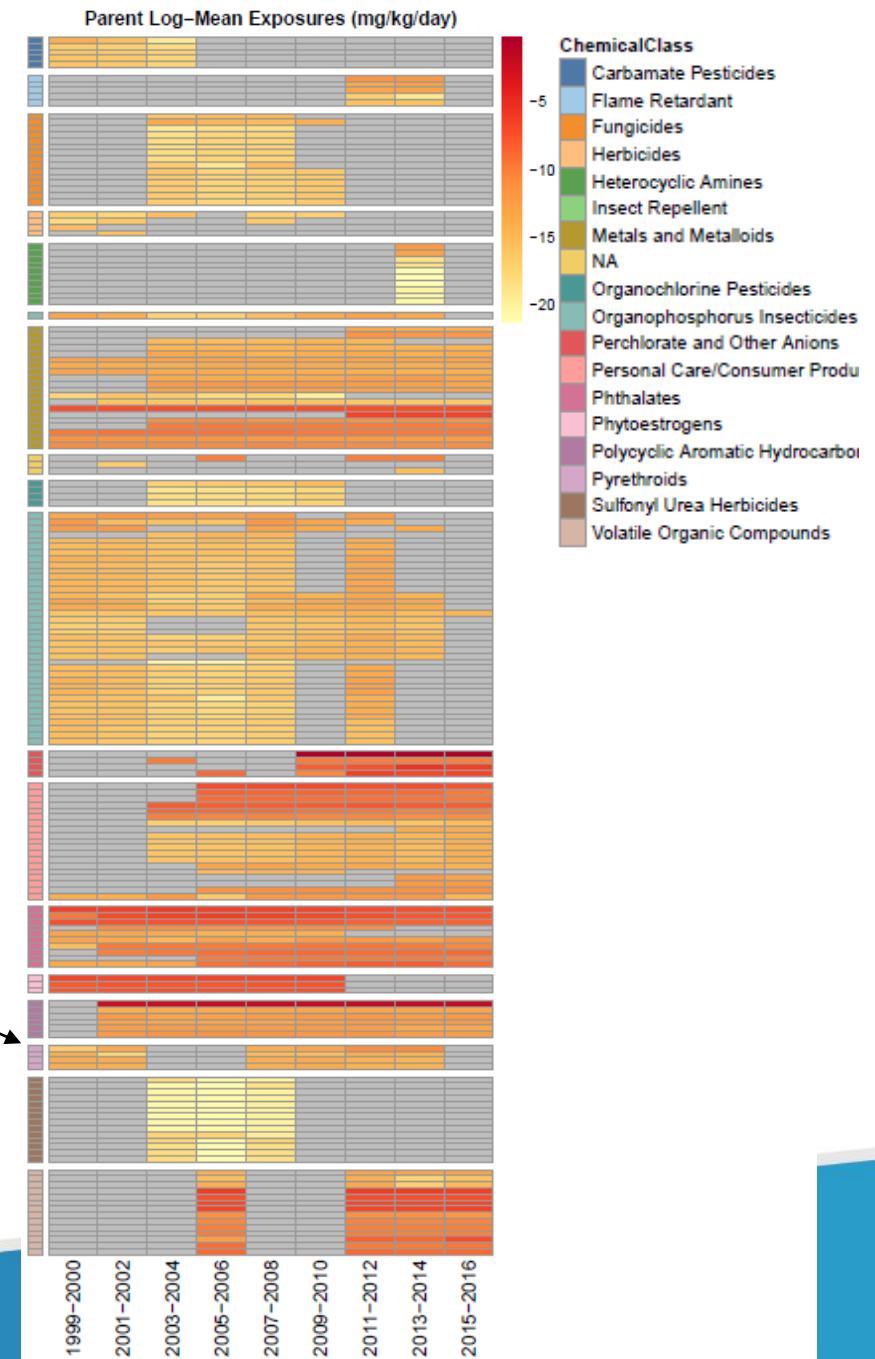
¹Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA

²Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA

BACKGROUND: Xenobiotic metabolites are widely present in human urine and can indicate recent exposure to environmental chemicals. Proper inference of which chemicals contribute to these metabolites can inform human exposure and risk. Furthermore, longitudinal biomonitoring studies provide insight into how chemical exposures change over time.

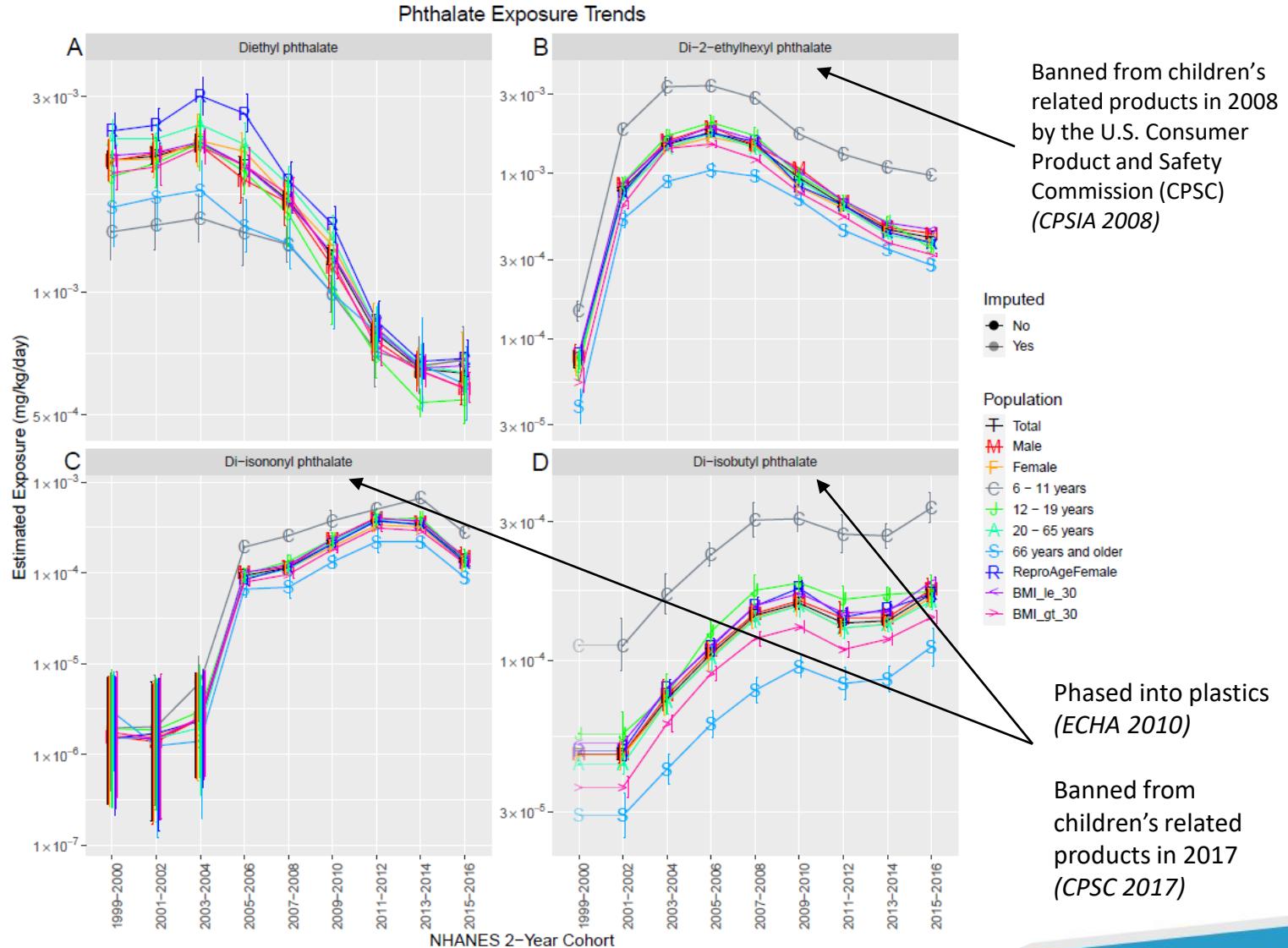
OBJECTIVES: We constructed an exposure landscape for as many human-exposure relevant chemicals over as large a time span as possible to characterize exposure trends across demographic groups and chemical types.

METHODS: We analyzed urine data of nine 2-y cohorts (1999–2016) from the National Health and Nutrition Examination Survey (NHANES). Chemical daily intake rates (in milligrams per kilogram bodyweight per day) were inferred, using the R package bayesmarker, from metabolite concentrations in each cohort individually to identify exposure trends. Trends for metabolites and parents were clustered to find chemicals with similar exposure patterns. Exposure variation by age, gender, and body mass index were also assessed.

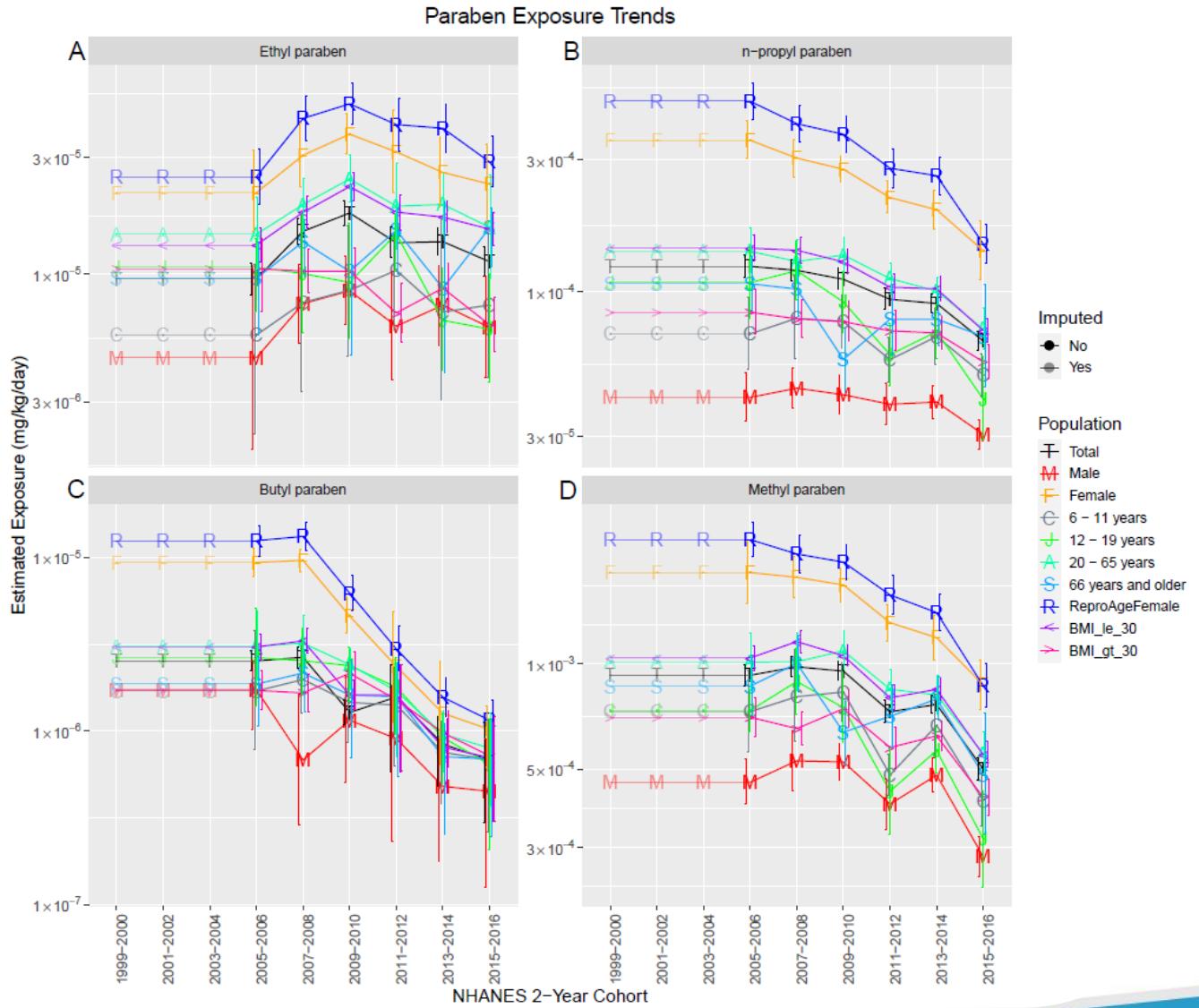

RESULTS: Intake rates for 179 parent chemicals were inferred from 151 metabolites (96 measured in five or more cohorts). Seventeen metabolites and 44 parent chemicals exhibited fold-changes ≥ 10 between any two cohorts (deltamethrin, di-*n*-octyl phthalate, and di-isonyl phthalate had the greatest exposure increases). Di-2-ethylhexyl phthalate intake began decreasing in 2007, whereas both di-isobutyl and di-isonyl phthalate began increasing shortly before. Intake for four parabens was markedly higher in females, especially reproductive-age females, compared with males and children. Cadmium and arsenobetaine exhibited higher exposure for individuals >65 years of age and lower for individuals <20 years of age.

DISCUSSION: With appropriate analysis, NHANES indicates trends in chemical exposures over the past two decades. Decreases in exposure are observable as the result of regulatory action, with some being accompanied by increases in replacement chemicals. Age- and gender-specific variations in exposure were observed for multiple chemicals. Continued estimation of demographic-specific exposures is needed to both monitor and identify potential vulnerable populations. <https://doi.org/10.1289/EHP12188>

Stanfield *et al.*, 2024


Landscape of Chemical Exposure

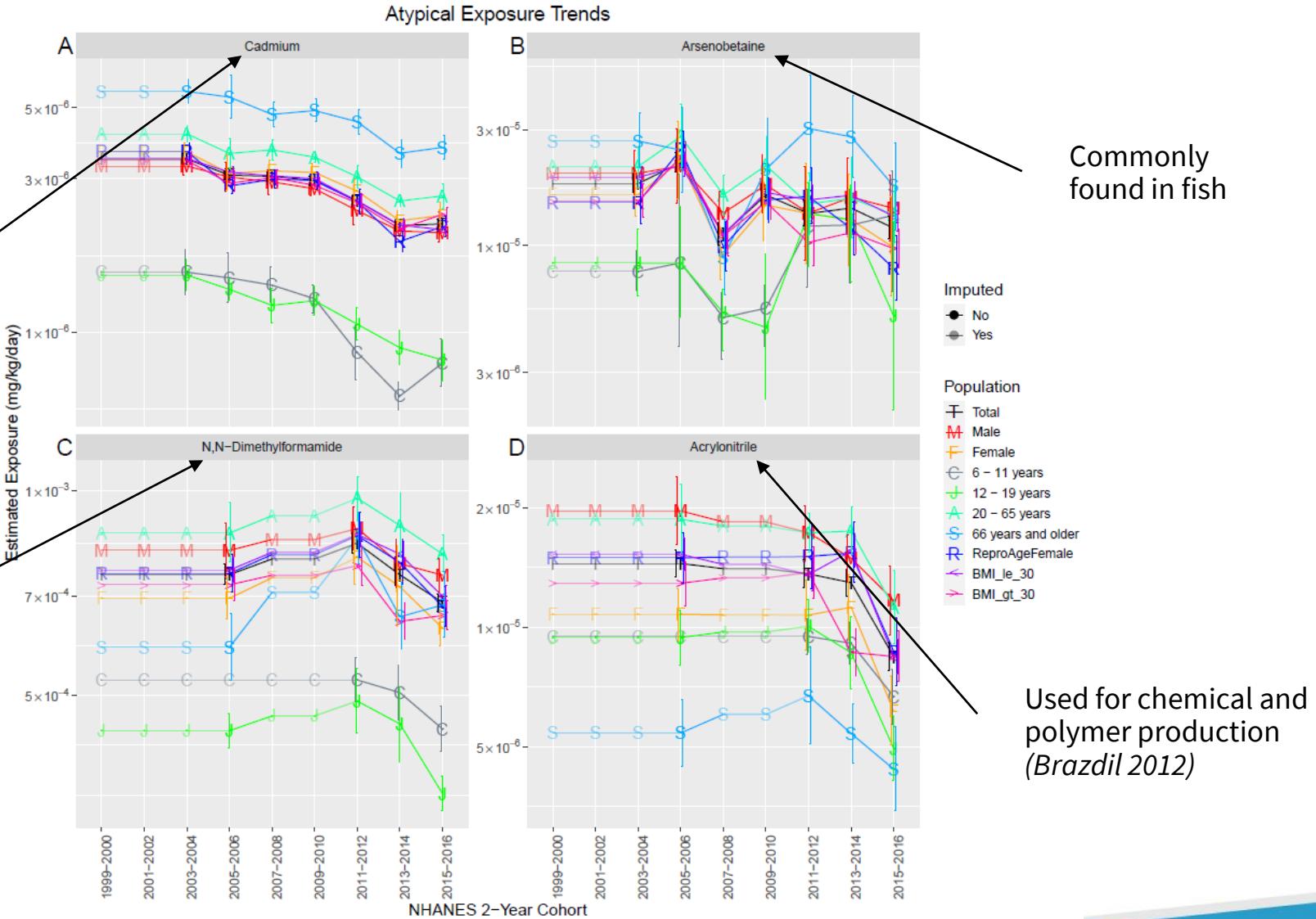
- Exposure inference for 179 chemicals spanning 18 years
- Summary statistics
 - Median FC = 3.22
 - 44 with FC > 10
 - *Deltamethrin* had largest FC (increase; 369.91-fold or 2.57 orders of magnitude)


Phthalates

- Phthalates are used as plasticizers in a wide range of consumer goods such as
 - Food packaging
 - Vinyl flooring
 - Personal care products (soaps, shampoos, hair sprays, cosmetics)

Parabens

- Parabens are primarily used as preservatives and antibacterial agents in cosmetics and other personal care products (Shen *et al.*, 2007)
- Similar results seen for pregnant women in Puerto Rico (Ashrap *et al.*, 2018)


Age-Specific Exposures

Previously used in plating and pigments in the 1990s

Then used in batteries

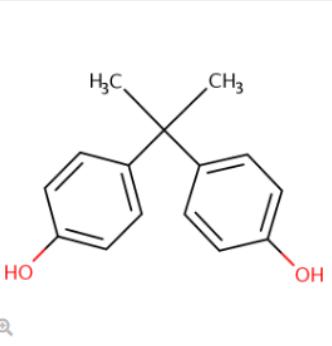
Recalls of children's jewelry in 2010 due to high levels of cadmium (CPSC 2010a; CPSC 2010b)

A solvent used in production processes for a wide variety of products and practices, including preparation of polyacrylonitrile (Bipp 2011)

Where to Find Exposure Inferences

CompTox Chemicals Dashboard v2.3.0

Home Search ▾ Lists ▾ About ▾ Tools ▾


Submit Comments

Search all data

Bisphenol A
80-05-7 | DTXSID7020182
Searched by Expert Validated Synonym.

Chemical Details

Chemical Details

Wikipedia

Bisphenol A (BPA) is a chemical compound primarily used in the manufacturing of various plastics. It is a colourless solid which is soluble in most common organic solvents, but has very poor solubility in water. BPA is produced on an industrial scale by the condensation reaction of phenol and acetone. Global production in 2022 was estimated to be in the region of 10 million tonnes.

BPA's largest single application is as a co-monomer in the production of polycarbonates

[Read more](#)

Quality Control Notes

Intrinsic Properties

Molecular Formula: C₁₅H₁₆O₂ [MOL FILE](#) [FIND ALL CHEMICALS](#)

Average Mass: 228.291 g/mol [ISOTOPE MASS DISTRIBUTION](#)

Monoisotopic Mass: 228.11503 g/mol

Structural Identifiers

<https://comptox.epa.gov/dashboard/>

Where to Find Exposure Inferences

CompTox Chemicals Dashboard v2.3.0

Home Search ▾ Lists ▾ About ▾ Tools ▾

Submit Comments

Search all data

Bisphenol A
80-05-7 | DTXSID7020182
Searched by Expert Validated Synonym.

National Health and Nutrition Examination Survey (NHANES) Inferences (mg/kg-bw/day)

Chemical Details

Executive Summary

Physchem Prop.

Env. Fate/Transport

Hazard Data

Safety > GHS Data

ADME > IVIVE

Exposure

Product & Use Categories

Chemical Weight Fraction

Chemical Functional Use

Toxics Release Inventory

Biomonitoring Data

Exposure Predictions

Production Volume

Chemical Details

Executive Summary

Physchem Prop.

Env. Fate/Transport

Hazard Data

Safety > GHS Data

ADME > IVIVE

Exposure

Bioactivity

GenRA

ACToR

Literature

Links

Comments

Search Monitoring Data

EXPORT

Monitoring Data

Demographic ↓↑	Lower Bound (Median) ↓↑	Upper Bound (Median) ↓↑	Median ↓↑
Age 6-11	3.80e-5	4.92e-5	4.33e-5
Age 12-19	2.55e-5	3.38e-5	2.93e-5
Age 20-65	2.79e-5	3.27e-5	3.02e-5
Age 65+	1.91e-5	2.31e-5	2.10e-5
BMI < 30	3.02e-5	3.30e-5	3.16e-5
BMI > 30	2.38e-5	2.74e-5	2.55e-5
Females	2.58e-5	3.03e-5	2.80e-5
Males	2.94e-5	3.37e-5	3.15e-5
Repro. Age Females	2.83e-5	3.31e-5	3.06e-5
Total	2.86e-5	3.08e-5	2.97e-5

Structural Identifiers

<https://comptox.epa.gov/dashboard/>

Where to Find Exposure Inferences

CompTox Chemicals Dashboard v2.3.0

Home Search Lists About Tools Submit Comments Search all data

Bisphenol A
80-05-7 | DTXSID7020182
Searched by Expert Validated Synonym.

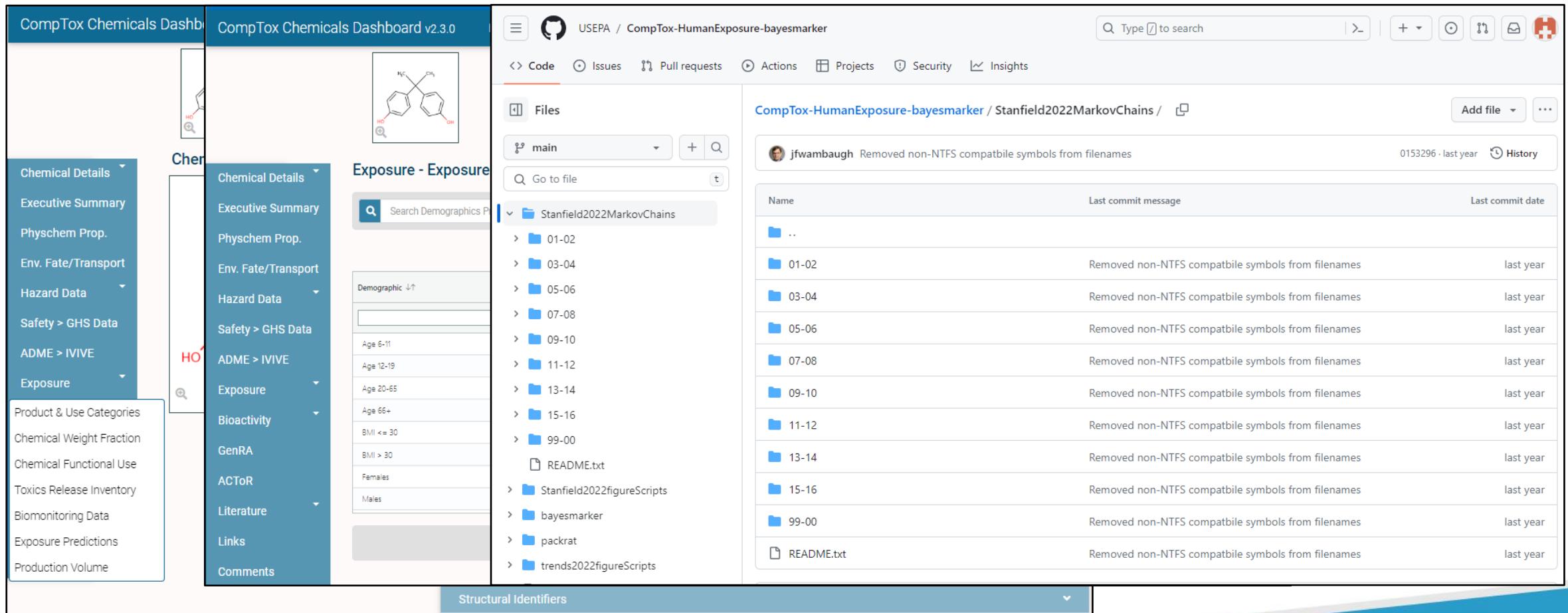
Chemical Details Executive Summary Physchem Prop. Env. Fate/Transport Hazard Data Safety > GHS Data ADME > IVIVE Exposure Product & Use Categories Chemical Weight Fraction Chemical Functional Use Toxics Release Inventory Biomonitoring Data **Exposure Predictions** Production Volume

Chemical Details Executive Summary Physchem Prop. Env. Fate/Transport Hazard Data Safety > GHS Data ADME > IVIVE Exposure Bioactivity GenRA ACToR Literature Links Comments

Exposure - Exposure Predictions (mg/kg-bw/day) i

Search Demographics Predictions Data EXPORT

Demographics Predictions Data


Demographic	Predictor	Median	Upper 95%	Units
Age 6-11	SEEM2 Heuristic	6.30e-5	1.05e-2	mg/kg/day
Age 12-19	SEEM2 Heuristic	5.87e-5	1.72e-2	mg/kg/day
Age 20-65	SEEM2 Heuristic	5.68e-5	1.15e-2	mg/kg/day
Age 66+	SEEM2 Heuristic	6.61e-5	1.95e-2	mg/kg/day
BMI <= 30	SEEM2 Heuristic	6.25e-5	1.36e-2	mg/kg/day
BMI > 30	SEEM2 Heuristic	7.07e-5	1.86e-2	mg/kg/day
Females	SEEM2 Heuristic	1.24e-5	2.90e-3	mg/kg/day
Males	SEEM2 Heuristic	3.87e-5	6.31e-3	mg/kg/day

EXPORT

Structural Identifiers

<https://comptox.epa.gov/dashboard/>

Where to Find Exposure Inferences

The image shows two side-by-side screenshots. On the left is the 'CompTox Chemicals Dashboard v2.3.0'. The main content area displays a chemical structure of a bisphenol-like compound with two hydroxyl groups. Below the structure is a section titled 'Exposure - Exposure' with a search bar and a dropdown menu for 'Demographic'. The left sidebar contains a navigation menu with sections like 'Chemical Details', 'Executive Summary', 'Physchem Prop.', 'Env. Fate/Transport', 'Hazard Data', 'Safety > GHS Data', 'ADME > IVIVE', 'Exposure', 'Product & Use Categories', 'Chemical Weight Fraction', 'Chemical Functional Use', 'Toxics Release Inventory', 'Biomonitoring Data', 'Exposure Predictions', and 'Production Volume'. On the right is a screenshot of a GitHub repository named 'CompTox-HumanExposure-bayesmarker'. The repository page shows a list of files in the 'Stanfield2022MarkovChains' folder, including subfolders for age groups (01-02, 03-04, 05-06, 07-08, 09-10, 11-12, 13-14, 15-16, 99-00) and scripts like 'README.txt', 'Stanfield2022figureScripts', 'bayesmarker', 'packrat', and 'trends2022figureScripts'. A commit history for the 'Stanfield2022MarkovChains' folder is shown, with multiple commits from 'jfwambaugh' dated 'last year', all of which removed non-NTFS compatible symbols from filenames.

Name	Last commit message	Last commit date
..		last year
01-02	Removed non-NTFS compatible symbols from filenames	last year
03-04	Removed non-NTFS compatible symbols from filenames	last year
05-06	Removed non-NTFS compatible symbols from filenames	last year
07-08	Removed non-NTFS compatible symbols from filenames	last year
09-10	Removed non-NTFS compatible symbols from filenames	last year
11-12	Removed non-NTFS compatible symbols from filenames	last year
13-14	Removed non-NTFS compatible symbols from filenames	last year
15-16	Removed non-NTFS compatible symbols from filenames	last year
99-00	Removed non-NTFS compatible symbols from filenames	last year
README.txt	Removed non-NTFS compatible symbols from filenames	last year

<https://comptox.epa.gov/dashboard/>

Summary

- A Bayesian inference approach was developed to provide higher-throughput exposure estimates based on measured data (for calibration of exposure models)
- Extended the data (cohorts, chemicals, metabolism links)
- Streamlined the pipeline in the form of the bayesmarker R package
- Extended analysis to examine trends of exposure based on the NHANES metabolite panel

Future Work

- Obtain exposure estimates using NHANES blood/serum concentrations (ongoing)
 - 76 chemicals (11 PFAS)
 - All cohorts (~5 per chemical on avg.) and same population groups
- Use new inferences in the development of SEEM4
 - Blood/serum and urine chemicals
 - Demographic-specific models

References

- Ashrap P, Watkins DJ, Calafat AM, Ye X, Rosario Z, Brown P, et al. 2018. Elevated concentrations of urinary triclocarban, phenol and paraben among pregnant women in Northern Puerto Rico: predictors and trends. *Environ Int* 121(pt 1):990–1002, PMID: 30316544, <https://doi.org/10.1016/j.envint.2018.08.020>.
- Bipp H, Kieczka H. 2011. Formamides. In: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, eds. 7th ed. Weinheim: Wiley-VCH, 720–741. https://doi.org/10.1002/14356007.a12_001.pub2.
- Brazdil JF. 2012. Acrylonitrile. In: Ullmann's Encyclopedia of Industrial Chemistry. Ullmann's Editorial Advisory Board, eds. Weinheim: Wiley-VCH, 1–10. https://doi.org/10.1002/14356007.a01_177.pub3.
- CPSC. 2010. Claire's recalls children's metal charm bracelets due to high levels of cadmium. [Press release.] <https://www.cpsc.gov/Recalls/2010/claires-recalls-childrens-metal-charm-bracelets-due-to-high-levels-of-cadmium> [accessed 24 January 2023].
- CPSC. 2010. FAF Inc. recalls children's necklaces sold exclusively at Walmart stores due to high levels of cadmium. [Press release.] <https://www.cpsc.gov/Recalls/2010/faf-inc-recalls-childrens-necklaces-sold-exclusively-at-walmart-stores-due-to-high> [accessed 24 January 2023].
- CPSC (Consumer Product Safety Commission). 2017. Prohibition of children's toys and childcare articles containing specified phthalates. Final rule. Docket No. CPSC-2014-0033. Fed Reg 82(207):49938–49982. <https://www.govinfo.gov/>
- ECHA (European Chemicals Agency). 2010. Evaluation of New Scientific Evidence Concerning the Restrictions Contained in Annex XVII to Regulation (EC) No 1907/2006 (REACH): Review of New Available Information for bis(2-ethylhexyl) phthalate (DEHP). Helsinki, Finland: ECHA. https://echa.europa.eu/documents/10162/13641/dehp_echa_review_report_2010_6_en.pdf/ce8e254f-3371-4c8b-8b92-865962bc5424 [accessed 24 January 2023].
- Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis: Chapman and Hall/CRC.
- Lakind JS, Naiman DQ. Bisphenol A (BPA) daily intakes in the daily intakes in the United States: Estimates from the 2003–2004 NHANES urinary BPA data. *J Expo Sci Env Epid*. 2008;18:608–15.
- Mage DT, Allen RH, Gondy G, Smith W, Barr DB, Needham LL. Estimating pesticide dose from urinary pesticide concentration data by creatinine correction in the Third National Health and Nutrition Examination Survey (NHANES-III). *J Expo Anal Env Epid*. 2004;14:457–65.
- Mansouri K, Karmaus AL, Fitzpatrick J, Patlewicz G, Pradeep P, Alberga D, et al. CATMoS: collaborative acute toxicity modeling suite. *Environ health Perspect*. 2021;129:47013.
- Pearce RG, Setzer RW, Strope CL, Wambaugh JF, Sipes NS. httk: R package for high-throughput toxicokinetics. *J Stat Softw*. 2017;79:1–26.
- Plummer M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. 2003.
- Prohibition of Children's Toys and Child Care Articles Containing Specified Phthalates: Determinations Regarding Certain Plastics, (2017).
- Ring CL, Arnot J, Bennett DH, Egeghy P, Fantke P, Huang L, et al. Consensus modeling of median chemical intake for the U.S. population based on predictions of exposure pathways. *Environ Sci Technol*. 2018;53:719–32.
- Setzer RW, Rabinowitz, J.R., Wambaugh, J.F, editor Inferring population exposures from biomonitoring data on urine concentrations. Society of Toxicology 53rd Annual Meeting; 2014; Phoenix, AZ.
- Shen HY, Jiang HL, Mao HL, Pan G, Zhou L, Cao YF. 2007. Simultaneous determination of seven phthalates and four parabens in cosmetic products using HPLC-DAD and GC-MS methods. *J Sep Sci* 30(1):48–54, PMID: 17313141, <https://doi.org/10.1002/jssc.200600215>.
- Stanfield Z, Setzer RW, Hull V, Sayre RR, Isaacs KK, Wambaugh JF. Bayesian inference of chemical exposures from NHANES urine biomonitoring data. *Journal of Exposure Science & Environmental Epidemiology*. 2022 Nov;32(6):833–46.
- Stanfield Z, Setzer RW, Hull V, Sayre RR, Isaacs KK, Wambaugh JF. Characterizing Chemical Exposure Trends from NHANES Urinary Biomonitoring Data. *Environmental Health Perspectives*. 2024 Jan 29;132(1):017009.
- Tan YM, Liao KH, Clewell HJ. Reverse dosimetry: interpreting trihalomethanes biomonitoring data using physiologically based pharmacokinetic modeling. *J Expo Sci Env Epid*. 2007;17:591–603.
- Venman BC, Flaga C. Development of an acceptable factor to estimate chronic end points from acute toxicity data. *Toxicol Ind Health*. 1985;1:261–9.
- Wambaugh JF, Setzer RW, Reif DM, Gangwal S, Mitchell-Blackwood J, Arnot JA, et al. High-throughput models for exposure-based chemical prioritization in the ExpoCast project. *Environ Sci Technol*. 2013;47:8479–88.
- Wambaugh JF, Bare JC, Carignan CC, Dionisio KL, Dodson RE, Jolliet O, Liu X, Meyer DE, Newton SR, Phillips KA, Price PS. New approach methodologies for exposure science. *Current Opinion in Toxicology*. 2019 Jun 1;15:76–92.

Thank You!

Stanfield.Zachary@epa.gov