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2 o EX p O S u re I n fe re n C e BACKGROUND: Knowing which environmental chemicals contribute to metabolites observed in humans is necessary for

meaningful estimates of exposure and risk from biomonitoring data.
. . OBJECTIVE: Employ a modeling approach that combines biomonitoring data with chemical metabolism information to produce
1 . P ro b I e m D eSC rl pt | O n chemical exposure intake rate estimates with well-quantified uncertainty.

METHODS: Bayesian methodology was used to infer ranges of exposure for parent chemicals of biomarkers measured in urine
samples from the U.S population by the National Health and Nutrition Examination Survey (NHANES). Metabolites were

2 . M O d e I | n g A p p roa C h probabilistically linked to parent chemicals using the NHANES reports and text mining of PubMed abstracts.

RESULTS: Chemical exposures were estimated for various population groups and translated to risk-based prioritization using
toxicokinetic (TK) modeling and experimental data. Exposure estimates were investigated more closely for children aged 3 to 5

3 . D a ta years, a population group that debuted with the 2015-2016 NHANES cohort.
SIGNIFICANCE: The methods described here have been compiled into an R package, bayesmarker, and made publidy available on
GitHub. These inferred exposures, when coupled with predicted toxic doses via high throughput TK, can help aid in the

3 R e S u It S identification of public health priority chemicals via risk-based bioactivity-to-exposure ratios.

* Keywords: Biomonitoring, Child Exposure/Health, Exposure Modeling, New Approach Methodologies (NAMs)
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EPA’s Exposure Forecasting Project

* EPA Office of Research and Development Exposure Forecasting
(ExpoCast) project was established in 2009 as a partner project
to EPA’s Toxicity Forecasting (ToxCast) project

* ExpoCast seeks to develop the data, tools, and evaluation
approaches required to generate rapid and scientifically-
defensible exposure predictions for the full universe of existing
and proposed commercial chemicals

* 380+ peer-reviewed publications since 2010

* ExpoCast scientists and trainees develop New Approach
Methodologies (NAMs) for exposure

EPA Office of Research and
Development Facility in
Research Triangle Park, NC

Slide adapted



Pathways of Chemical Exposure

Exposure Pathway Models

Commercial Consumer Industrial Agricultural Food Pharmaceutical
Sector " SHEDS-HT
Dietary Pathways FINE
_________________________________ ol NE o, Consumer |[— RAIDAR-ICE
E Specific Product ! E Specific Indu | E Specific food USEtox
Use and Release | ____ Categorles ||  Categomés | | | Categories | — Production Volume
~ USEtox
o B Far-Field - RAIDAR
. armaceutica . .
Consumer Pathways Am:,em Pathways Industrial Stockholm Convention
thways ___ Production Volume
Occupational
Pathways \L  Pesticide REDs
Media o USEtox
7 :art_F',‘;'d | RAIDAR
esticiaes Stockholm Convention

. Production Volume

7 [ SHEDS-HT Dietary
Production Volume
Exposure USEtox
< Dietary T RAIDAR
R Food Contact
eceptor _ ) .
PO Consumers Workers General Human Population ~ Ecological Receptors — Substance Migration
Populations

Ring et al., 2019

Aggregate

Sample the 282 e Biomonitoring

Population

Slide adapted



Pathways of Chemical Exposure

Commercial Consumer Industrial Agricultural Food Pharmaceutical

Exposure Pathway Models

 SHEDS-HT
FINE

Sector
Dietary Pathways

Consumer

—  RAIDAR-ICE

Specific Product E Specific Indu ' E Specific ‘Food
i 1 1 h A
Use and Release | Categories | Categori

USEtox
__ Production Volume

~ USEtox

Pharmaceutica

Ambient Pathways

Consumer Pathways
thways

Far-Field
Industrial

RAIDAR

< .
Stockholm Convention

Pathways

Occupational \L

___ Production Volume

 Pesticide REDs

Media

N7

Far-Field
Pesticides

USEtox
—  RAIDAR

Stockholm Convention

. Production Volume

[ SHEDS-HT Dietary
Production Volume

Exposure

Dietary

USEtox
RAIDAR

Receptor

. Consumers Workers General Human Population ~ Ecological Receptors
Populations

v

Aggregate
—— Exposure

Sample the 282 e Biomonitoring

Population

Slide adapted

Food Contact
__ Substance Migration

Ring et al., 2019




Systematic Empirical Evaluation of Models (SEEM)
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Systematic Empirical Evaluation of Models (SEEM)
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Systematic Empirical Evaluation of Models (SEEM)

Apply calibration and estimated uncertainty to other chemicals
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How do we use biomonitoring data to
evaluate high-throughput exposure models?

Exposure Biomonitoring
Models Data
Daily Intake Rate Biomarker Concentrations
(mg/kg/day) (ug/L)
Reverse
Dosimetry/Exposure
Inference

e



How do we use biomonitoring data to
evaluate high-throughput exposure models?
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Problem Description

Reverse toxicokinetics (tk) approach

* Assume individuals are at steady-state equilibrium due to a constant rate of
exposure to one or more parent compounds (Lakind & Naiman, 2008; Mage et al., 2004; Tan et al., 2007)

* Estimate the rate at which chemicals are filtered into urine by the kidneys

* Chemicals are assumed to be (mainly) cleared by the kidneys via glomerular filtration, which
can be estimated by creatinine excretion rates (CER)

* Creatinine correction .
(mg/kg/day); = i, 5creatinine

BW kg gcreatinine day
* When available, use urine flow data
* CER (8 eatinine/ day) = creatinine conc. (g/mL) * urine flow rate (mL/min) * 24*60 (min/day)

* When not available, model daily excretion
* Is a function of muscle mass, which is influenced by sex, race, age, and bodyweight




How do we model this problem?

Model Needs

e Handle censored data

* Determine optimal parent-
metabolite fractions (¢’s)

* Incorporate distribution
information for urine
concentrations

* Include confidence assessment
e How certain are we of our results?




How do we model this problem?

Model Needs

e Handle censored data

* Determine optimal parent-
metabolite fractions (¢’s)

* Incorporate distribution
information for urine
concentrations

* Include confidence assessment
e How certain are we of our results?

Bayesian Inference

* Allows easy incorporation of
censored data

e Can integrate prior information
about the system
* Considers what we already know

and extrapolates the rest from the
accompanying data

e Returns a distribution of
parameter values that aids in
downstream statistical analyses




Bayesian Inference

A method of statistical inference using Bayes’ theorem
P(E|H) - P(H)
P(E)
H = hypothesis, P(H) = prior probability, E = evidence, P(H|E) = posterior
probability, P(E[H) = likelihood, P(E) = model evidence

P(H|E) =

* Uses prior knowledge (prior distribution) in order to estimate
posterior probabilities

* Models describe the problem as a directed graph where nodes
are parameters and data, and edges denote dependencies
between parameters and data

* Employs Markov Chain Monte Carlo (MCMC)

* A method for integrating over probability space to perform a Bayesian
analysis (Gelman et al., 2013)

* Converges on the “posterior” space where all iterations are equally likely
and Markov chain iterations represent samples from the posterior
distribution

* Can be implemented in R using JAGS (http://mcmc-
jags.sourceforge.net/) and Stan (https://mc-stan.org/)
programming via the packages rjags and rstan
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Bayesian Inference

A method of statistical inference using Bayes’ theorem
P(E|H) - P(H)
P(E)
H = hypothesis, P(H) = prior probability, E = evidence, P(H|E) = posterior
probability, P(E[H) = likelihood, P(E) = model evidence

P(H|E) =

Uses prior knowledge (prior distribution) in order to estimate
posterior probabilities

Models describe the problem as a directed graph where nodes
are parameters and data, and edges denote dependencies
between parameters and data

Employs Markov Chain Monte Carlo (MCMC)

* A method for integrating over probability space to perform a Bayesian
analysis (Gelman et al., 2013)

* Converges on the “posterior” space where all iterations are equally likely
and Markov chain iterations represent samples from the posterior
distribution

Can be implemented in R using JAGS (http://mcmc-
jags.sourceforge.net/) and Stan (https://mc-stan.org/)
programming via the packages rjags and rstan

model{
## Model the parent exposures
for (iin 1:N) {
IP[i] ~ dnorm(IPmu, tau.V)
Plil<- exp(IP[i])
}
IPmu ~ dnorm(0, 0.001)

## code so that prior for sd(log(P[i])) is half-Cauchy(25)
sd.dum ~ dt(0,1/625,1)

sd.V <- abs(sd.dum)

tau.V <- 1/pow(sd.V,2)

## Link the unobserved parent exposure to the observed (but censored) metabolites.
IU <- log(t(Phi) %*% P)
## tau.se <- 1/(se * se)
for (jin 1:Mn) {
ly[j] ~ dnorm(lU[j],tau.sel[j])
}
for (jin (Mn+1):M) {
Pralod[j - Mn] <- 1 - pnorm(lod(j - Mn], IU[j], tau[j - Mn])
ly[j] ~ dbin(Pralod[j - Mn], SS[j - Mn])
}
## Estimate mixmu, mixtau, mixpi externally, and input as data.
for (jin 1:(M - Mn)) {
Isd[j] ~ dnormmix(mixmu, mixtau, mixpi)
tau[j] <- exp(-2*Isd[j])
}

for (i in 1:NBranches)
{

phi[Bstart[i]:Bstop[i]] ~ ddirch(Alpha[Bstart[i]:Bstopli]])
}

for (i in 1:Ndelta) {
Phi[indx[i,1],indx[i,2]] <- phili]
}
}
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Bayesian inference of chemical exposures from NHANES urine

biomonitoring data
Zachary Stanfield (3, R. Woodrow Setzer, Victoria Hull', Risa R. Sayre', Kristin K. Isaacs' and John F. Wambaugh' ™
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BACKGROUND: Knowing which environmental chemicals contribute to metabolites observed in humans is necessary for
meaningful estimates of exposure and risk from biomonitoring data.

OBJECTIVE: Employ a modeling approach that combines biomonitoring data with chemical metabolism information to produce
chemical exposure intake rate estimates with well-quantified uncertainty.

METHODS: Bayesian methodology was used to infer ranges of exposure for parent chemicals of biomarkers measured in urine
samples from the US population by the National Health and Nutrition Examination Survey (NHANES). Metabolites were
probabilistically linked to parent chemicals using the NHANES reports and text mining of PubMed abstracts.

RESULTS: Chemical exposures were estimated for various population groups and translated to risk-based prioritization using
toxicokinetic (TK) modeling and experimental data. Exposure estimates were investigated more closely for children aged 3 to 5
years, a population group that debuted with the 2015-2016 NHANES cohort.

SIGNIFICANCE: The methods described here have been compiled into an R package, bayesmarker, and made publicly available on
GitHub. These inferred exposures, when coupled with predicted toxic doses via high throughput TK, can help aid in the
identification of public health priority chemicals via risk-based bioactivity-to-exposure ratios.

Keywords: Biomonitoring, Child Exposure/Health, Exposure Modeling, New Approach Methodologies (NAMs)

Journal of Exposure Science & Environmental Epidemiology; https://doi.org/10.1038/s41370-022-00459-0
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The bayesmarker R Package
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National Health and Nutrition Examination Survey TABLE OF CONTENTS
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« Data Processing and Editing
First Published: September 2017 « Analytic Notes

i « Ref
Last Revised: NA eferences

« Codebook
s SEQN - Respondent sequence number
Component Description « SDDSRVYR - Data release cycle
The demographics file provides individual, family, and household-level information on the = RIDSTATR - Interview/Examination status
following topics: « RIAGENDR - Gender
= Survey participant’s household interview and examination status; « RIDAGEYR - Age in years at scresning
« Interview and examination sample weights; * RIDAGEMN - Age in months at screening -
0 to 24 mos

» Masked variance units;

. i . . ) ) » RIDRETH1 - Race/Hispanic origin
» Language of questionnaires used for the interviews conducted in the househeld and in the . o
mobile examination center; = RIDRETH3 - Race/Hispanic origin w/ NH
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» Use of proxy or interpreter during the interviews;
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U.S. residence. » DMDEDUC3 - Education level -

Children/Youth 6-19

The format and coding for all the variables included in the 2015-2016 NHANES demographics + DMDEDUC2 - Education level - Adults 20+

file are identical to those released for the 2013-2014 survey cycle.

Similar to the 2011-2014 cycle, the sample design for NHANES 2015-2016 also includes an
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BMXRECUM - Recumbent Length (cm)
BMIRECUM - Recumbent Length Comment
BMXHEAD - Head Circumference (cm)
BMIHEAD - Head Circumference Comment
BMXHT - Standing Height (cm)

BMIHT - Standing Height Comment
BMXBMI - Body Mass Index (kg/m**2)
BMDBMIC - BMI Category - Children,/Youth
BMXLEG - Upper Leg Length {cm)

BMILEG - Upper Leg Length Comment
BMXARML - Upper Arm Length (cm)
BMIARML - Upper Arm Length Comment
BMXARMC - Arm Circumference (cm)
BMIARMC - Arm Circumference Comment
BMXWAIST - Waist Circumference (cm)
BMIWAIST - Waist Circumference Comment
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NHANES Overview

National Health
2015-2016 Data Docl
Demographic Variable]

Data File: DEMO_l.xpt
First Published: Septembdg

Last Revised: NA

Component Descript

The demographics file
following topics:

The format and coding
file are identical to tho

Survey participant’s
Interview and exam|
Masked variance unj

Language of questig
maobile examination

Use of proxy or inte
The six-month time
Pregnancy status;

Househoeld and fami
Househeld and fami

Household composif]
old), and adults age]

Demographic inform

Other selected dem
education, marital s
U.5. residence.

National Health 3
2015-2016 Data Docuy
Body Measures (BMX_I)

Data File: BMX_l.xpt
First Published: September|

Last Revised: NA

Component Descripti

MNHAMES body measures|
estimate the prevalence
and to examine the assg
the 1.5, population. The|
establish population-bas|
associated with body we|

The measurements and
component are as follow|

« Weight: All ages

« Head circumference:

« Recumbent length: bi
+ Standing height: 2 yd
« Upper leg length: 8 v
« Upper arm length: 2

« Mid-upper arm circunj
» Waist circumference:

« Sagittal abdominal di

Eligible Sample

National Health and Nutrition Examination Survey
2015-2016 Data Documentation, Codebook, and Frequencies
Personal Care and Consumer Product Chemicals and Metabolites (EPHPP_I)

Data File: EPHPP_l.xpt
First Published: January 2019

Last Revised: NA

Component Description

Biomonitoring of environmental phenols, parabens, and triclocarban is used to assess
prevalence and relevance of exposure in public health. The routes of human exposure to
these compounds include industrial pollution, pesticide use, food consumption, and use of
personal care products.

Bisphenol A (BPA) is used in the manufacture of polycarbonate plastics and epoxy resins,
which can be used in protective coatings on food containers and as composites and sealants
in dentistry. Concerns over potential health risks of BPA have led to restrictions on the use of
BPA in certain baby and children products {(U.S. Food and Drug Administration 2014). BPA
alternatives, such as bisphenol S (BPS, 4,4 "-sulfonyldiphenol) and bisphenaol F {BPF, 4,4'-
dihydroxydiphenylmethane), have been introduced in the market to replace BPA (Liao et al.
2012). Some phenols are used as sunscreen agents for skin protection, and as UV filters in
cosmetic products and plastics to improve stability (e.g., benzophenone-3). Phenols are also
used as bactericides (e.qg., triclosan) in soap and are found in other personal care products.
Other chlorophenols have been used in the wood preservation industry as intermediates in
the production of pesticides, and as disinfectants or fungicides for industrial and indoor home
use. The manufacture of certain chlorinated aromatic compounds can also produce

chlorophenols as byproducts.

Parabens, a group of alkyl (e.g., methyl, ethyl, propyl, butyl) esters of p-hydroxybenzoic
acid, are widely used as antimicrobial preservatives in personal care products, and can also
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« SEQN - Respondent sequence number
« WTSB2YR - Subsample B weights

« URXBP3 - Urinary Benzophenone-3
(ng/mL)

« URDBP3LC - Urinary Benzophenone-3
Comment Code

« URXBPH - Urinary Bisphenol A (ng/mL)

« URDBPHLC - Urinary Bisphenol A Comment
Code

« URXBPF - Urinary Bisphenol F {ng/mL)

« URDBPFLC - Urinary Bisphenol F Comment
Code

* URXBPS - Urinary Bisphenol S {(ng/mL)

« URDBPSLC - Urinary Bisphenol S Comment
Code

« URXTLC - Urinary Triclocarban (ng/mL)

s« URDTLCLC - Urinary Triclocarban Comment
Code

« URXTRS - Urinary Triclosan (ng/mL)

« URDTRSLC - Urinary Triclosan Comment
Code

* URXBUP - Butyl paraben (ng/mL)

All survey narticinants wers sligible for the bodv measures cormponent, Preanant women and
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Demographic-specific Exposures s,

lower for men

Log2
Difference in Estimated Exposure Across Population Groups (Group—Total)
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ChemicalClass
Lower exposure for Carbamate Pasticide Metals and Metalloids Fhytoestrogens
teens and seniors for Flame Retardant Organochlorine Pesticide Polycyclic Aromatic Hydrocarbon
certain fungicides Fungicides Organaphosphorus Inseciicides Pyrethroid
and herbicides Herbicides Ferchlorate and Other Aniokis Sulfonyl Urea Herbicides
Heterocyclic Amines Personal Care and Consumdr Product Chemicals Volatile Organic Compound

Insect Repellent Phthalate and Phthalate Alternative

Opposite exposure of most Higher exposure to diazinon, lower
metals for children and seniors exposure to omethoate and pyrene



Examining Childhood Exposures (2015-2016)

Exposure Fold Change Comparison Between the Total Population and Children aged 3-5 and 6-11

Metsls fer Parsonal Polycyclic Volatils
and ind Othe Care/Consumar Phihalates Aromatic Organic MNA
Matalloids Ari Product Hydrocarbons Compounds

=

Comparison

M 3-5:Total
B &-11:Total

Fold Change

* NHANES started monitoring

urine metabolites in 3—5-
year-olds in the 2015-2016
cohort

Consistently higher exposure
children aged 3-5,
particularly for some metals
and phthalates

Noticeable difference for
some personal care product
chemicals between the two
child populations compared
to all individuals



Bioactivty
Exposure
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Bioactivity:Exposure Ratio (BER) for Parent Chemicals of NHANES Metabolites
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Censored Data
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Metabolite Data Availability Across NHANES Cohorts

Making the Most of the
NHAENES Data

* The NHANES continuous survey cohorts
can be compared or combined

Measured

* We can generate exposure estimates for
each cohort individually

Metabolite

fes

* We can compare changes in exposure
for biomarkers measured in multiple
cohorts
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2003-2004
2009-2010
2011-2012
2013-2014
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A Section 508-conformant HTML version of this artide

Resear(:h is available at https://doi.org/10.1289/EHP12188.

Characterizing Chemical Exposure Trends from NHANES Urinary Biomonitoring
Data

Zachary Stanfield,"> R. Woodrow Seizer,’ Victoria Hull,"? Risa R. Sayre,’? Kristin K. Isaacs,’ and John F. Wambaugh'©

'Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park,
North Carolina, USA
*0ak Ridge Associated Universities, Oak Ridge, Tennessee, USA

BackGrousp: Xenobiotic metabolites are widely present in human urine and can indicate recent exposure 1o environmental chemicals. Proper infer-
ence of which chemicals contribute to these metabolites can inform human exposure and risk. Furthermore, longitudinal biomonitoring studies pro-
vide insight into how chemical exposures change over time.

OBJeECTIVES: We constructed an exposure landscape for as many human-exposure relevant chemicals over as large a lime span as possible (o charac-
lerize exposure rends across demographic groups and chemical types.

MeTHODS: We analyzed urine data of nine 2-y cohorts (1999-2016) from the National Health and Nutrition Examination Survey (NHANES).
Chemical daily intake rates (in milligrams per kilogram bodyweight per day) were inferred, using the R package bayesmarker, from metabolite con-
centrations in each cohort individually 1o identify exposure trends. Trends for metabolites and parents were clustered to find chemicals with similar
exposure patlerns. Exposure variation by age, gender, and body mass index were also assessed.

ResuLTs: Intake rates for 179 parent chemicals were inferred from 151 metabolites (96 measured in five or more cohorts). Sevenleen metabolites and
44 parent chemicals exhibited fold-changes > 10 between any two cohorts (deltamethrin, di-r-octyl phthalate, and di-isononyl phthalate had the great-
esl exposure increases). Di-2-ethylhexyl phthalate intake began decreasing in 2007, whereas both di-isobutyl and di-isononyl phthalate began increas-
ing shortly before. Intake for four parabens was markedly higher in females, especially reproductive-age females, compared with males and children.
Cadmium and arsenobetaine exhibited higher exposure for individuals =63 years of age and lower for individuals <20 years of age.

Discussion: With appropriate analysis, NHANES indicales trends in chemical exposures over the past two decades. Decreases in exposure are
observable as the result of regulatory action, with some being accompanied by increases in replacement chemicals. Age- and gender-specific varia-
tions in exposure were observed for multiple chemicals. Continued estimation of demographic-specific exposures is needed to both monitor and 1den-
tify potential vulnerable populations. hitps:/f/doi.org/10.128%EHP12188

Stanfield et al., 2024
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Landscape of

Chemical Exposure

e Exposure inference for 179
chemicals spanning 18 years

* Summary statistics
* Median FC=3.22
* 44 with FC > 10

* Deltamethrin had largest FC
(increase; 369.91-fold or 2.57
orders of magnitude)

Parent Log-Mean Exposures (mg/kg/day)

Carbamate Pesticides

Flame Retardant

Fungicides.
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Phthalate Exposure Trends

A Diethyl phthalate B Di-2-ethylhexyl phthalate
Banned from children’s
P ht h a ‘ a te S 3x10°° 3x10°- related products in 2008
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Paraben Exposure Trends
A Etinyl paraben B n-propyl paraben

Parabens

* Parabens are primarily mpued
used as preservatives and g o
antibacterial agents in : T
cosmetics and other g “ . Co B
personal care products Smwme
(Shen et al., 2007) . 25ﬂ7?§3w

« Similar results seen for |
pregnant women in
Puerto Rico (Ashrap et al,, -

2018)
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Atypical Exposure Trends

Age-Specific  * -~ ==
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Where to Find Exposure Inferences

CompTox Chemicals Dashboard v2.3.0 Home  Search ¥  Lists ¥  About ¥  Tools ~ Submit Comments search all data

Bisphenol A

Y 80-05-7 | DTXSID/7020182
Searched by Expert Validated Synonym.

- Chemical Details
Chemical Details

|

Executive Summary Wikipedia

Physchem Prop. Hy,C CHy
Bisphenol A (BPA) is a chemical compound primarily used in the manufacturing of various plastics. It is a colourless solid
Env. Fate/Transport which is soluble in most common organic solvents, but has very poor solubility in water. BPA is produced on an industrial
Hazard Data scale by the condensation reaction of phenol and acetone. Global production in 2022 was estimated to be in the region of 10
million tonnes.

Safety > GHS Data
BPA's largest single application is as a co-monomer in the production of polycarbonates

ADME > IVIVE HO OH Read more
Exposure
Q
Product & Use Categories Quality Control Notes

Chemical Weight Fraction

Intrinsic Properties

Chemical Functional Use

O oo
s (s PR

Exposure Predictions o Monoisotopic Mass: 228.11503 g/mol

Production Volume

Structural |dentifiers

https://comptox.epa.gov/dashboard/



Where to Find Exposure Inferences

CompTox Chemicals Dashb| CompTox Chemicals Dashboard v2.3.0 Home Search ~ Lists * About~  Tools ~ Submit Comments search all data

Bisphenol A
80-05-7 | DTXSID7020182

Searched by Expert Validated Synonym.

National Health and Nutrition Examination Survey @

Chemical Details Chemical Details (N HAN ES) Inferences (mg / kg-bw /d ay)
Executive Summary Executive Summary
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Where to Find Exposure Inferences
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Where to Find Exposure Inferences
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Summary Future Work

* A Bayesian inference approach was * Obtain exposure estimates using
developed to provide higher- NHANES blood/serum concentrations
throughput exposure estimates based (ongoing)
on measured data (for calibration of * 76 chemicals (11 PFAS)
exposure models) * All cohorts (~5 per chemical on avg.) and

e Extended the data (cohorts, same population groups

chemicals, metabolism links) * Use new inferences in the
development of SEEM4

* Blood/serum and urine chemicals
* Demographic-specific models

e Streamlined the pipeline in the form
of the bayesmarker R package

e Extended analysis to examine trends
of exposure based on the NHANES
metabolite panel
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