

Small Molecule Lead Optimization to Increase Selectivity and Minimize Off-target Effects

Yu (Zoe) Zhong

Genentech, Safety Assessment, South San Francisco, CA

zhong.yu@gene.com

Conflict of Interest Statement

Yu (Zoe) Zhong is an employee at Genentech

Objectives/Outline

- Objectives: To share the rationale and approaches on how to increase selectivity and minimize off-target effects of small molecules – an important aspect of safety lead optimization
- Outline:
 - Why we care about off-target effects (secondary pharmacology) of small molecules
 - What are the drivers of secondary pharmacology and How to minimize it
 - How to contextualization the data
 - Case studies
 - Conclusions

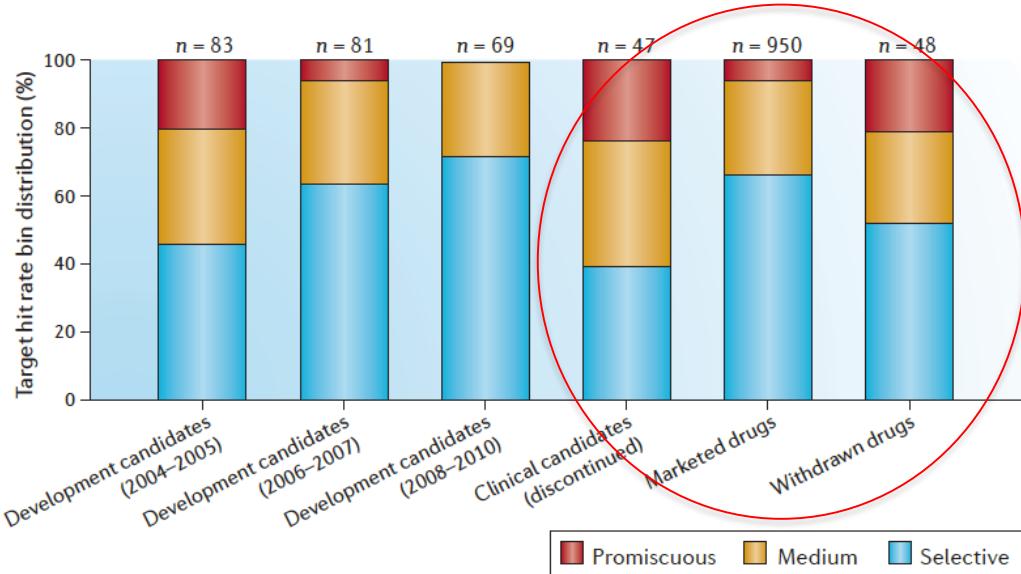
Two main sources of toxicity for small molecules

On-Target

- aka ‘exaggerated pharmacology’
- Due to pharmacological engagement of the intended molecular target (primary pharmacology)
- Therapeutic index ~ 1
- **Strategy – Target Safety Assessment:** Does the potential on-target safety liability fit the indication (benefit/risk)?

Off-Target

- Due to **pharmacological engagement of unintended molecular target(s)**; and/or other non-pharmacological toxicity (e.g. membrane damage)
- Physicochemical characteristics-driven
- ADME-related
- **Strategy – Minimizing**


Understanding secondary pharmacology is required by ICH S7A

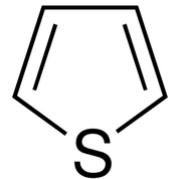
- **Secondary pharmacology –**
'Studies on the mode of action and/or effects of a substance not related to its desired therapeutic target'
 - Near targets
 - Off-target pharmacological effects
- Data are included in regulatory filing
 - e.g. IND 2.6.2 Pharmacology section

Promiscuity is associated with greater toxicity and attrition

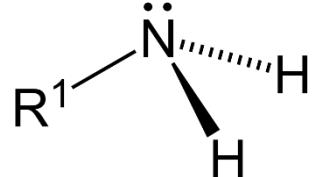
In Vitro Pharmacology Receptor Screens

Promiscuity index:

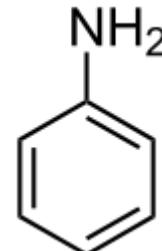
- High: >20% targets with >50% inhibition
- Medium: 5-20% targets with >50% inhibition
- Low: <5% targets with >50% inhibition

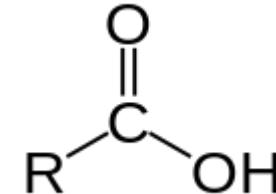

Underlying assumption:

Compounds that bind numerous, unintended targets are associated with greater toxicity

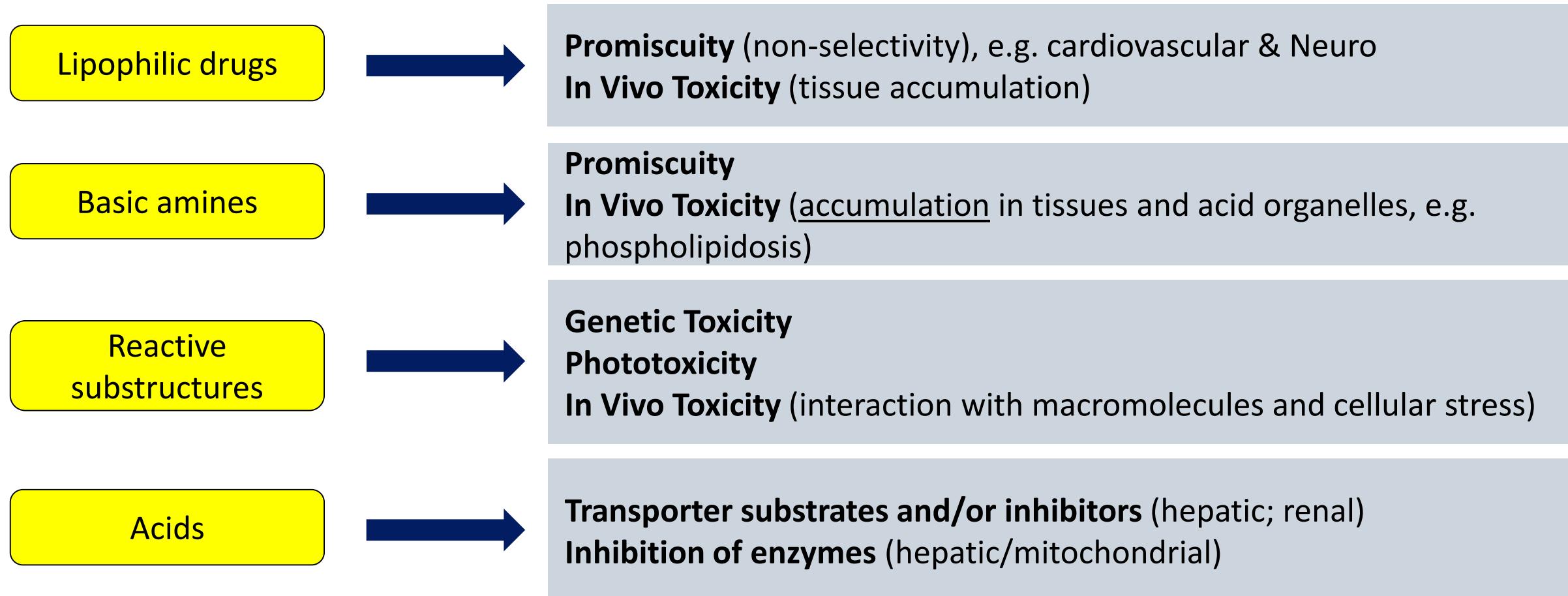

- Marketed Drugs: 5% promiscuous & 66% selective
- Withdrawn or Discontinued Drugs: 20-24% promiscuous; 40-50% selective

Physicochemical properties are fixed for each molecule and include the structural features and physical attributes


- Examples of physical attributes: molecular weight, lipophilicity (cLogP), acid-ionization constant (pKa), solubility, boiling & melting points, etc.
- Examples of structural features include substructures like thiophenes, anilines, basic amines, & acids, which determine the chemical interactions of a drug

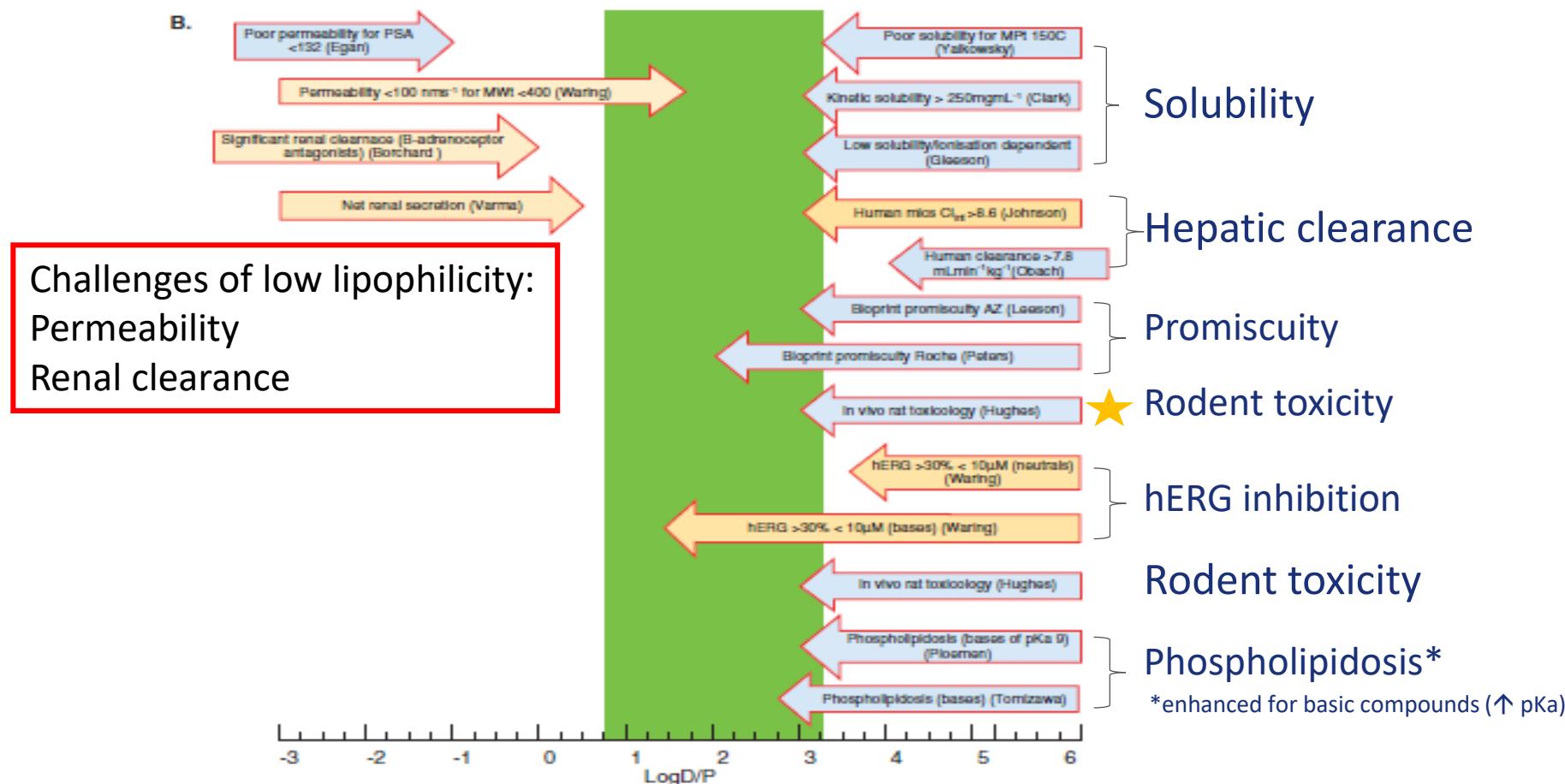

thiophene

Primary amine



aniline

Carboxylic acid


Physicochemical properties are the main drivers of off-target toxicity through multiple mechanisms

- We do not always understand the mechanism of toxicity; however, known mechanisms are evaluated for all small molecules

High lipophilicity is a risk factor for promiscuity and in vivo toxicity

Challenges of high lipophilicity:
A risk factor for solubility, metabolic stability, promiscuity (including hERG), tissue binding, in vivo toxicity

Increased lipophilicity is associated with toxicity in vivo

- Compounds with low-ClogP/high-TPSA: ~2.5 times more likely to be clean as to be toxic
- High-ClogP/low-TPSA compounds: ~2.5 times more likely to be toxic as to be clean, representing an odds ratio of greater than 6

Table 1
Observed odds for toxicity versus ClogP/TPSA

Toxicity	Total-drug		Free-drug	
	TPSA > 75	TPSA < 75	TPSA > 75	TPSA < 75
Clog P < 3	0.39 (57)	1.08 (27)	0.38 (44)	0.5 (27)
Clog P > 3	0.41 (38)	2.4 (85)	0.81 (29)	2.59 (61)

Strategy:

- 1) Work with your chemists to optimize physchem properties; in general decrease lipophilicity, and basicity
- 2) Utilize receptor panels to understand the promiscuity

*In vivo rat tolerability study (>=4 days); Toxicity assessed at a specific exposure threshold (10 μ M Cmax total drug)

TPSA - total polar surface area

Secondary pharmacology profiling strategy

- Off target pharmacology can be observed/measured in a variety of systems
 - In vitro recombinant/native cell lines (binding/functional) Initial screen
 - In vitro / Ex vivo tissue bath studies
 - In vivo animal studies
- Panels
 - General panels with selected targets important for CNS, CV, GI safety (kinases, G protein-coupled receptors, ion channels, transporters, nuclear receptors and enzymes)
 - Target-specific panels to examine near targets (e.g., kinase panel, protease panel, ion channel panels for respective primary targets in that class)
- Adjust based on primary target, indication, chemical space, company experience

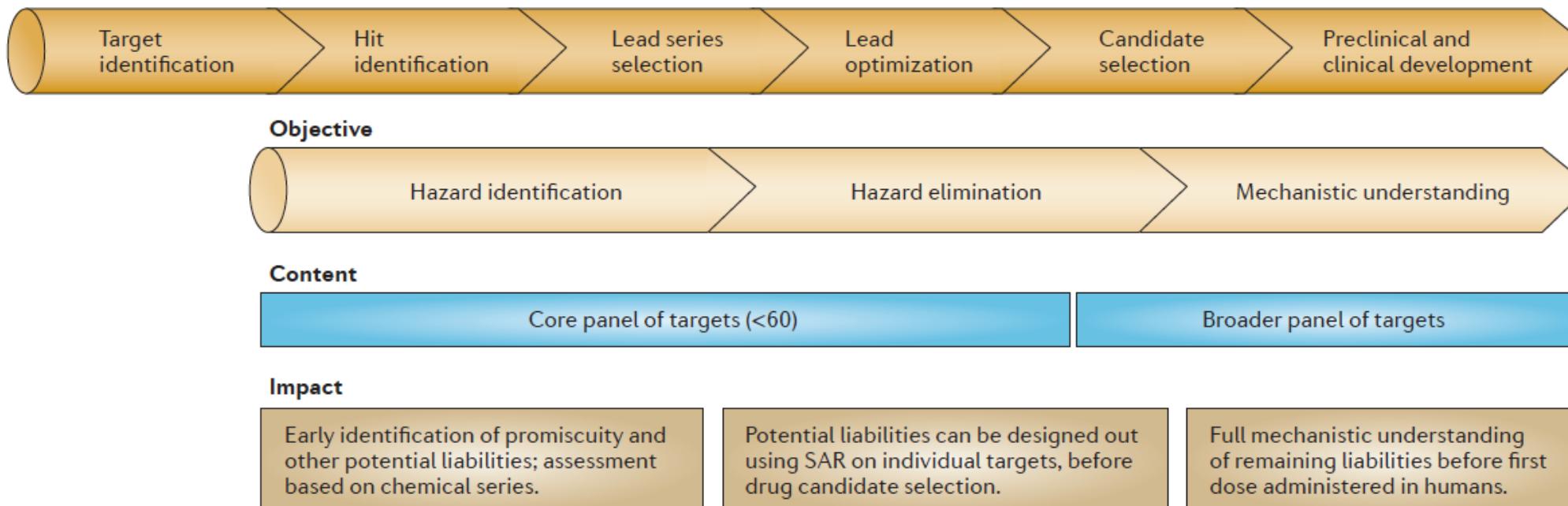

Example: General secondary pharmacology panel

Table 1 | Recommended targets to provide an early assessment of the potential hazard of a compound or chemical series

Targets (gene)	Hit rate*		Main organ class or system	Effects		Refs [§]
	Binding	Functional or enzymatic		Agonism or activation		
<i>G protein-coupled receptors</i>						
Adenosine receptor A _{2A} (<i>ADORA2A</i>)	High	Low (agonist)	CVS, CNS	Coronary vasodilation; ↓ in BP and reflex; ↑ in HR; ↓ in platelet aggregation and leukocyte activation; ↓ in locomotor activity; sleep induction	Potential for stimulation of platelet aggregation; ↑ in BP; nervousness (tremors, agitation); arousal; insomnia	57
α _{1A} -adrenergic receptor (<i>ADRA1A</i>)	High	Low (agonist); high (antagonist)	CVS, GI, CNS	Smooth muscle contraction; ↑ in BP; cardiac positive ionotropy; potential for arrhythmia; mydriasis; ↓ in insulin release	↓ in smooth muscle tone; orthostatic hypotension and ↑ in HR; dizziness; impact on various aspects of sexual function	58
α _{2A} -adrenergic receptor (<i>ADRA2A</i>)	High	Low (agonist); medium (antagonist)	CVS, CNS	↓ in noradrenaline release and sympathetic neurotransmission; ↓ in BP; ↓ in HR; mydriasis; sedation	↑ in GI motility; ↑ in insulin secretion	59
β ₁ -adrenergic receptor (<i>ADRB1</i>)	Medium	NA	CVS, GI	↑ in HR; ↑ in cardiac contractility; electrolyte disturbances; ↑ in renin release; relaxation of colon and oesophagus; lipolysis	↓ in BP; ↓ in HR; ↓ in CO	60
β ₂ -adrenergic receptor (<i>ADRB2</i>) [‡]	High	Medium (agonist); medium (antagonist)	Pulmonary, CVS	↑ in HR; bronchodilation; peripheral vasodilation and skeletal muscle tremor; ↑ in glycogenolysis and glucagon release	↓ in BP	61
Cannabinoid receptor CB ₁ (<i>CNR1</i>)	Medium/high	Medium (antagonist)	CNS	Euphoria and dysphoria; anxiety; memory impairment and poor concentration; analgesia; hypothermia	↑ in weight loss; emesis; depression	62
Cannabinoid receptor CB ₂ (<i>CNR2</i>)	Medium	Medium (agonist)	Immune	Insufficient information	↑ in inflammation; ↓ in bone mass	63

Alignment of secondary pharmacology profiling to the drug discovery and development process

- Early lead identification: Hazard identification of initial lead series; influence SAR, and compound optimization
- Candidate selection: Risk assessment – functional follow up, safety margin estimation
 - Sufficient safety margin to $hC_{\max, \text{free}}$ at efficacious exposure?
- Investigation: Contextualization of in vivo non-clinical / clinical findings
 - Can in vivo findings be explained by coverage of the off-target?

Interpretation and contextualization of binding hits

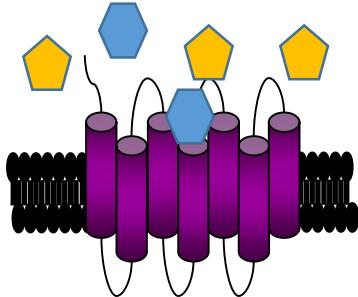
- **Promiscuity:**

- Measured as: ratio (%) of targets with $\geq 50\%$ binding inhibition over total N of assays at 10 μM
- A measure of propensity of a molecule to bind other targets
- Promiscuity in a small panel is a surrogate for promiscuity across proteins in the body

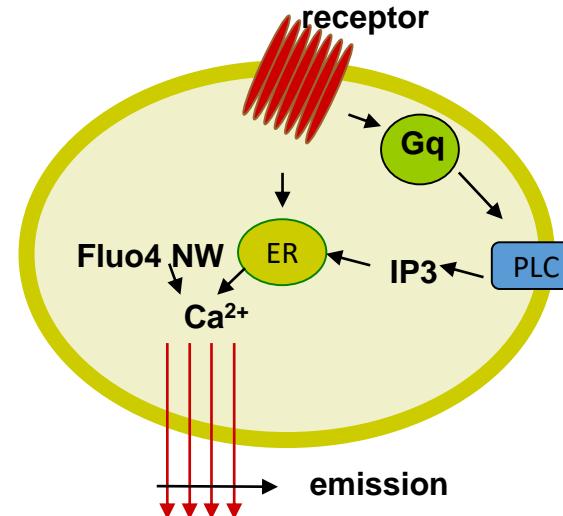
Promiscuity index:

High: >20% targets with $>50\%$ inhibition

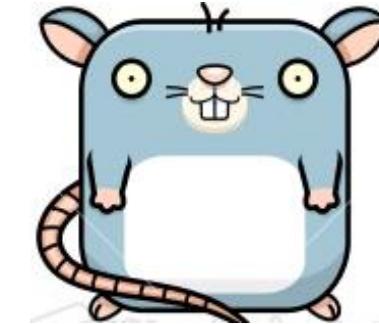
Medium: 5-20% targets with $>50\%$ inhibition


Low: <5% targets with $>50\%$ inhibition

- **Selectivity:**


- Measured as: targets with $\geq 75\%$ binding inhibition in radioligand binding assays
- Evaluate each target “hit” for potential functional translation and in vivo implication

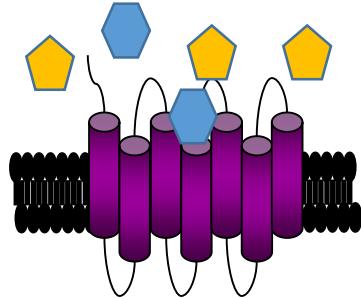
Follow-up for binding hits: Determining functional translation and in vivo relevance


Binding Assay

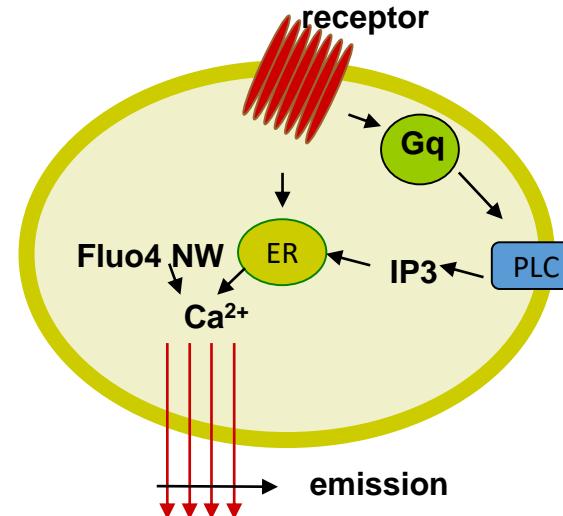
Functional Assay

In vivo

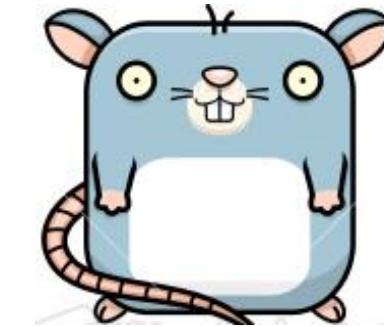
- Direct measure of affinity
- Single, defined site of binding only on the target
- No differentiation of modes of action
- Multiple binding sites on one target


- Functional Translation - end result of binding at any site on the target
- **Agonist or Antagonist**

Assumptions:


- Free Drug Hypothesis: only free (unbound) drug is available to interact with the target
- Free Cmax frequently used as a relevant (and more conservative) measure of drug exposure

Follow-up for binding hits: Determining functional translation and in vivo relevance


Binding Assay

Functional Assay

In vivo

- Direct measure of affinity
- Single, defined site of binding only on the target
- No differentiation of modes of action
- Multiple binding sites on one target

- Functional Translation - end result of binding at any site on the target
- **Agonist or Antagonist**

Decision making:

- How many off-targets are affected?
- Which off-targets are affected?
- What is the safety margin?

Assumptions:

- Free Drug Hypothesis: only free (unbound) drug is available to interact with the target
- Free Cmax frequently used as a relevant (and more conservative) measure of drug exposure

Case study: Syncope observed in dogs with a small molecule - consistent with alpha adrenergic receptor blockade

In Life Observations (PK study GNE#1 at 1 mg/kg intravenously in dogs):

- Hypoactive at 2 min post dose and could not stand up (4 min post dose)
- Heart rates doubled - 115-121 bpm (baseline) to 200-208 bpm (~12 min post dose)
- Heart rate and normal activity recovered by ~ 45 - 58 min post dose

Case study: Syncope observed in dogs with a small molecule - consistent with alpha adrenergic receptor blockade

In Life Observations (PK study GNE#1 at 1 mg/kg intravenously in dogs):

- Hypoactive at 2 min post dose and could not stand up (4 min post dose)
- Heart rates doubled - 115-121 bpm (baseline) to 200-208 bpm (~12 min post dose)
- Heart rate and normal activity recovered by ~ 45 - 58 min post dose
- Tachycardia is a normal physiologic response to hypotension in attempt to maintain blood pressure (BP)
 - Alpha adrenergic receptors maintain normal BP
- GNE#1 potently antagonizes alpha 1a receptors ($IC_{50} = 86 \text{ nM}$)
 - Unbound plasma GNE#1 at C_0 (1.2 μM) is ~14x higher than IC_{50}
 - Recovery could be based on cleared drug or compensation to raise BP
- GNE#2 was tolerated in dogs without similar clinical effects
 - GNE#2 is ~10x less potent at the alpha 1a receptor and
 - Unbound plasma GNE#2 at C_0 ~40 nM is 21x below the alpha 1a IC_{50} .
- Weaker inhibition observed at alpha 1b, but not other alpha receptors

Receptor Binding Data* (% displacement of ligand at 10 μM)		
	GNE#1	GNE#2
alpha1**	82	75
alpha2**	62	39
Functional Assay - IC_{50} (nM)		
Receptor	GNE#1	GNE#2
alpha1a	86	840
alpha1b	4700	920
alpha2a	32000	37000
alpha2b	29000	15000
alpha2c	-	71000

* Binding does not discriminate agonists vs antagonists; ** nonspecific subtypes that do not indicate subtypes

Selectivity on near targets important for safety margin considerations

- Target-specific
- Between primary pharmacological target and its homologues/isoforms
- Need to be considered early in project so assays can be in place for proactive lead optimization
- In vivo therapeutic index maybe smaller than in vitro selectivity, e.g.
 - IC_{75} or IC_{90} for efficacy vs. IC_{50} or IC_{20} for toxicity
 - C_{trough} needed for efficacy vs. C_{max} -driven toxicity
- Assess off-target risks in the context of expected in vivo exposures (free) to understand potential therapeutic index

Conclusions

- Off-target pharmacology (secondary pharmacology) and promiscuity can be a significant safety attrition source
- Strategies to minimize promiscuity and enhance selectivity can be achieved by
 - Optimize the physicochemical properties of a molecule, avoid known structural alerts
 - Measure secondary pharmacology on near targets and unrelated targets
 - *In vitro* ligand binding and cell-based function assays for hazard identification, and risk assessment
- Pay special attention to near targets where selectivity might be challenging
- Contextualize *in vitro* selectivity data with *in vivo* findings, taking into account unbound exposure at efficacious dose range

Reference

- Bowel et al. 2012. *Nat Rev Drug Discov.* 11: 909
- Hughes et al. 2008. *Bioorganic Med Chem Lett.* 18: 4872
- Waring et al. 2010. *Expert Opin Drug Discov.* 5: 235

Acknowledgement

- Dolo Diaz
- Donna Dambach
- William Proctor
- Eric Harstad
- Satoko Kiyota

Abbreviations

- ICH - The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use
- IND - investigational new drug application
- LLE - ligand-lipophilicity efficiency
- CNS - central nervous system
- CV - cardiovascular
- GI - gastrointestinal
- SAR - structure activity relationship
- Cmax - maximum (or peak) serum concentration of a drug
- Ctrough - lowest concentration of a drug
- hERG - the human Ether-à-go-go-Related Gene, codes Kv11.1, the alpha subunit of a potassium ion channel
- cLogP - Calculated logP value of a compound, which is the logarithm of its partition coefficient between n-octanol and water $\log(c_{\text{octanol}}/c_{\text{water}})$, a well established measure of the compound's hydrophilicity
- TPSA - topological polar surface area of a molecule
- BP - blood pressure
- IC₅₀ - the concentration of an inhibitor that corresponds to 50% of maximum inhibition effect