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AOP Network linking several MIEs and Key Events to common Adverse Outcomes resulting from disruption of the Androgen
Signaling Pathway in utero. Other MIEs not shown include inhibition of DHT synthesis, for example.
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PHTHALATE (PE) Adverse Outcome Pathway

Unknown Molecular Initiating Event(s) that reduces mRNA for about 40 Leydig cell genes involved in steroid hormone transport and synthesis, Insl3 synthesis and
cholesterol synthesis. Reduced testicular testosterone and Insl3 synthesis are causally related to reproductive malformations. Reductions in testosterone production

in the fetal male rat can be used to predict the in utero doses that induce malformations in F1 male rats after birth.
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TESTOSTERONE PRODUCTION

Relative Potency of Phthalates thatreduce fetal
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Factors forreduced Testosterone Production using Dipentyl Phthalate as the

Nine Phthalate in utero Mixture Study:
Prediction of the % of males with Epididymal Agenesis Using the Relative Potency

Reference Chemical:
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Percent Males with
Reproductive Tract

Comparison of the relationship between reduced fetal rat Testosterone Production (T Prod) and the %
of Male rat Offspring with Reproductive Tract Malformations: Data from Nine Phthalates
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Predicting the adverse postnatal effects of a 9 phthalate mixture administered in utero on GD
14-18 from a Predictive Logistic Regression Model of Fetal Testosterone Reductions versus F1

Male Rat Reproductive Abnormalities. Prediction Method 2.
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Conclusion: we can predict the adverse reproductive effects of in utero exposure to a phthalate or a mixture of
phthalates solely from the fetal T Production Reductions eliminating the need for a One generation Postnatal Study .



| bet we could do
something similar
with PFAS




Background

* Legacy PFAS (PFOS, PFOA, PFNA) replaced with perfluoroalkyl ether acids (PFEAS)

* Parent PFEAs and manufacturing byproducts detected in drinking water and/or human serum in

multiple locations across the US and globally

* Few or no published toxicity studies on most “emerging” or “next generation” PFAS
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Background

Legacy PFAS produce adverse developmental, liver, and/or immune toxicity, among other effects, in
animal studies (rat and mouse) and are correlated with similar effects in human epidemiological studies

Adverse developmental, liver, or immune effects are the primary basis for all US state and federal risk
assessment reference doses and drinking water advisories or regulations (Post 2020 ET&C DOI: 10.1002/etc.4863)

Questions:

* Do emerging PFAS exert similar toxicities and potencies as legacy PFAS in animal studies?

* Given most humans are known to be exposed to multiple PFAS, how do these compounds interact in
mixture-based toxicity studies?

* Can we design shorter term studies that are quantitatively predictive of developmental effects to
produce risk assessment relevant data more quickly than traditional guideline studies?



Research Objectives

* Assess maternal, fetal, and perinatal effects of gestational exposure to PFEAs that have
documented human exposure but little/no published toxicity data available

* Develop Adverse Outcome Pathways to facilitate the use of in vitro or refined in vivo assays
to predict effects of additional PFAS in future testing
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PFAS Studies

Cell-based studies (in vitro)
* Peroxisome proliferator activated receptor (PPAR) alpha/beta/gamma
* Estrogen receptor, Androgen receptor, Glucocorticoid receptor

Maternal and fetal studies — rat 5-day dosing
* Maternal and fetal body weight, liver weight
* Maternal clinical chemistry and thyroid hormones
* Maternal and fetal liver gene expression
* Maternal and fetal serum and liver PFAS concentrations

Maternal and postnatal studies — rat 17-day dosing
* Maternal and neonatal body weight, liver weight
* Birthweight
* Neonatal survival
* Neonatal liver histopathology
e Maternal and neonatal clinical chemistry
e Maternal and neonatal serum and liver PFAS concentrations
* Maternal and neonatal liver gene expression




PPAR a

PPARy

In vitro human and rat PPAR alpha and gamma activity
Rat

Fold induction (% of max)

Fold induction (% of max)

Human
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Protein, carbohydrate, and lipid metabolism
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PPARa and PPARy play major roles in lipid and carbohydrate metabolism pathways



Relevance of PPAR to human health

PPARa-induced rodent hepatocarcinoma described as not relevant to human health (Corton et al. 2018)

PPARa is the “master regulator of lipid metabolism” and PPARYy critical for carbohydrate metabolism
* Multiple pharmaceutical therapeutics target PPARa (fibrates) and PPARYy (thiazolidinediones)
* Dual receptor therapeutics PPARa+PPARy (glitazars)
 Multiple fibrates and thiazolidinediones and all glitazars have failed clinical trials due to
toxicity (Hong et al. 2018)

PPARa well expressed in human liver slices (Janssen et al. 2015) and expression levels similar to mouse
(Rakhshandehroo et al. 2009)

Clearly, PPARa and PPARYy both relevant to human health and alteration of lipid and carbohydrate metabolism
conserved across species and critical during pregnancy/gestation



In vivo study designs

Implantation
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CHarIes River Sprague-Dawley rat [Crl:CD(SD)]
>3 dams/litters per dose group

Oral gavage administration

Ultra pure water vehicle

Body + organ weights

Serum clinical chemistry
Tissue-specific gene expression
Serum & liver PFAS concentration
Histopathology

Serum thyroid hormones (T3/T4)

GD=gestation day
PND=postnatal day



Fetal liver PPAR signaling pathway gene expression — GD 14-18

Fetal GenX liver
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PPAR signaling pathway gene expression — rodent hepatocytes
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Glucose metabolism pathway gene expression — GD16-20 exposure

Fetal GenX liver (GD20) Fetal NBP2 liver (GD20)

(A) Genes with ANOVA p<0.001
Pck1- 3.2 No Glucose Metabolism genes affected
Pdk4+ 5.3
Ugp2- 21 37| -36| -51

(B) Genes with ANOVA p<0.01

G6pc- 4.1ﬁ
Pdp2- 21 21| 25 2.0

Cltl 1 3 10 30 62.5 125
Maternal HFPO-DA dose (mg/kg/d)




Both GenX and NBP2 produce neonatal mortality, similar to PFOS, PFOA and PFNA

Neonatal survival
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NBP2 ~10-fold more potent than GenX based on oral maternal dose



Neonatal effects on birthweight and liver weight differ between GenX and NBP2

Birthweight PND2 pup relative liver weight
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There are notable similarities and differences in GenX vs NBP2 developmental toxicity, likely associated
with different chemical functional groups (carboxylate vs sulfonate) and toxicokinetics



Histopathological neonatal liver glycogen deficit a common key event for GenX and NBP2

PNDO pup liver glycogen score
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Liver carbohydrate and lipid metabolism are strongly affected by GenX but seemingly less so by NBP2



Serum [glucose] (mg/dL)

Serum [glucose] (mg/dL)

Newborn pup clinical chemistry more affected by GenX than NBP2
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Altered gestational glucose homeostasis

Fetal nutrition dependent on maternal supply and placental transfer

Maternal dietary glucose restriction produces low birthweight and neonatal mortality in the rat (Lanoue
et al. 1999)

Indicators of Glycogen Storage Disease = \ birthweight, J» serum glucose, * liver weight,
M serum lipids (Kishnani et al. 2014)

Placental Insufficiency and Intrauterine Growth Restriction (Brown et al. 2015)
«  fetal liver Pck1 expression associated with compensatory gluconeogenesis
o  fetal liver Pdk4 expression associated with decreased glucose oxidation
« J fetal liver Ugp2 expression associated with decreased glycogen synthesis

Critical period of maternal dietary glucose restriction similar to critical period for PFOS effects —
Gestation Days 19-20 (Koski et al. 1990; Grasty et al. 2003)



Serum concentrations — GD 16-20 exposure
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NBP2 maternal and fetal serum concentrations ~10-30-fold greater than GenX at similar maternal dose



Serum [GenX] (ug/mL)

Maternal liver and serum GenX from two dosing intervals

Maternal serum [GenX] Maternal liver [GenX]
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GenX does not accumulate in maternal rat serum or liver from longer exposure



GenX maternal liver weight and neonatal mortality from two dosing intervals

Maternal liver weight 125 mg/kg/d exposure
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Despite no accumulation, GenX effects more severe from longer exposure interval
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Maternal rat GenX blood levels compared to human fluorochemical workers in the Netherlands

Human fluorochemical worker Margin of Internal Exposure:
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~30% of human fluorochemical worker GenX blood concentrations were within a factor of 1000 of
maternal rat blood concentrations at lowest observed adverse effect level (LOAEL)



Comparison of NBP2 serum levels — rat to human

Margin of Internal Exposure:

Human serum [NBP2] Ratio of Rat/Human serum [NBP2]
NC State “GenX Exposure Study”

genxstudy.ncsu.edu
Kotlarz et al. (2020) doi: 10.1289/EHP6837
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>95th centile of human NBP2 blood concentrations were within a factor of 10000 of maternal rat blood
concentrations at lowest observed adverse effect level (LOAEL)



PFAS co-exposures in pregnant women

Woodruff et al. 2011 — US pregnant women from NHANES 2003-2004 (n=268)
* 99% with detectable PFOS and PFOA

Dereumeaux et al. 2016 — Elfe Cohort French pregnant women 2011 (n=277)
 >99% with detectable PFOA, PFOS, PFHxS, PFNA

Berg et al. 2014 — Northern Norway Mother-and-Child Contaminant Cohort Study 2007-2009 (n=391)
 >99% with detectable PFHxS, PFOS, PFOA, PFNA, PFDA, PFUnDA

Kashino et al. 2020 — Hokkaido, Japan prospective birth cohort 2003-2009 (n=1985)
 >99% with detectable PFOS, PFOA, PFNA, PFDA, PFUnDA

Critical to study mixture-based effects of exposure to multiple PFAS compounds
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Individual chemical dose response data used to design
equipotent mixture experiment
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Maternal oral dose (mg/kg/d)

GenX
O EDsgg =110.7 mg/kg
Slope =-3.6

NBP2
@ EDs5y=9.5 mg/kg
Slope =-9.0

PFOS (Lau et al. 2003)
% EDso = 3.1 mg/kg
Slope =-7.1

Actual mixture doses for in vivo study

100% 33% 10% 3.3% 1%
GenX (mg/kg) 110 36.7 11 3.67 1.1
NBP2 (mg/kg) 10 3.3 1 0.3 0.1
PFOS (mg/kg) 3 1 0.3 0.1 0.03

1

Top dose = each chemical at EDg,
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Based on individual study data, body weight and liver weight effects
appear driven mostly by GenX



Experimental data compared to mixture model predictions

Pup survival ~85% survival predicted
- : if chemicals were acting
100 @ O independently

80__ Observed experimental data for
== GenX+NBP2+PFOS mixture
EDso = 36.0% |_— Assumes toxicological similarity

Dose Addition Model Prediction /
EDgo = 32.8%

Response Addition Model Prediction < — _ _ '
EDso = 135.0% Assumes toxicological independence

60—

40

Pup survival on PND2 (%)

Complete litter loss was
observed and predicted
by dose addition

1 10 100 1000
Maternal oral dose (% of top dose)

Based on traditional mixture models, neonatal mortality is dose additive indicating chemicals
produced a cumulative effect of co-exposure



Publications and Ongoing Research

* Two publications on GenX developmental toxicity:

* Conley et al. (2019) Adverse maternal, fetal, and postnatal effects of hexafluoropropylene oxide dimer acid (GenX)
in the Sprague-Dawley rat. Environmental Health Perspectives DOI:10.1289/EHP4372.

* Conley et al. (2021) Hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX) alters maternal and fetal glucose
and lipid metabolism and produces neonatal mortality, low birthweight, and hepatomegaly in the Sprague-Dawley
rat. Environment International DOI: 10.1016/j.envint.2020.106204

* Publications in preparation:

* Developmental toxicity of Nafion byproduct 2

* |n vitro PPAR alpha/beta/gamma activation by PFAS and fatty acids

e Ongoing research:

* Developmental toxicity of a mixture of PFOS, GenX and NBP2

EPA




Key Findings and Impact
GenX and NBP2 produced adverse maternal and neonatal effects but with disparate patterns and oral
doses generally consistent with those reported for PFOA and PFOS, respectively

Published GenX data (and future NBP2 data) are useful for state and federal risk assessments and
regulatory efforts to characterize hazard and identify points-of-departure

Mixture effects of GenX+NBP2+PFOS on neonatal mortality are dose additive and support a cumulative
risk assessment approach for exposure to multiple PFAS

Internal dosimetry is important for estimating potency across PFAS and relevance to human exposures
Development of a short-term (~5-day exposure) in vivo developmental toxicity assay that is

guantitatively predictive of effects from longer-term studies would allow for rapid generation of risk
assessment relevant data on data-poor PFAS



PFAS developmental toxicity AOPs
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