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Various Exposures and Unknown Outcomes



How can mixtures be assessed? 

• Existing risk assessment methods rely on data 

from individual chemicals 

• No standardized approach to assess risk of 

mixtures

Two proposed methods: 

1) Whole-mixture approach 

2) Component-based approach

Current challenges in mixtures risk 

assessment: 

1) Health effects

2) Unknown composition of the mixtures

3) Exposure assessment 



Traditional Toxicity Testing 

Methods: In Vivo 

New Approach Methods for 

Toxicity Testing: In Vitro 

• Time and labor-intensive, 

expensive, and low 

throughput 

• Challenges with 

extrapolation to humans 

• Models often overlook 

inter-individual variability

• Ethical concerns 

• Faster, cheaper, and higher-

throughput

• Ability to look at biologically-

relevant phenotypes

• Can evaluate inter-individual 

and inter-species variability 

• Reduces use of animal 

testing 

• Human lymphoblast cell lines 

(1,000+ donors)

• Human induced pluripotent 

stem cell-derived 

cardiomyocytes (~43 donors)

• Assess inter-individual and 

chemical-specific variability 

• Translation to humans 

Population-Based Human In 

Vitro Models 

Why are we interested in population-based in vitro methods? 



Why do toxicity testing in human lymphoblast cell lines? 

Slide adapted from Ivan Rusyn 

Technical and 
intrinsic 

variability

Intrinsic 
variability

• Abdo et al Environ Int 85:147-55, 2015

• Abdo et al Environ Health Perspect 123(5):458-66, 

• Eduati et al Nat Biotechnol 33(9):933-40, 2015

• Chiu et al ALTEX 34(3):377-388, 20172015

Hazard and Dose-Response 

Assessments

Ability to Assess Variability and 

Relevant to Humans 

Mechanistic Hypotheses and 

Identification of Susceptible Genes

https://www.sciencedirect.com/science/article/pii/S0160412015300520?via%3Dihub
https://ehp.niehs.nih.gov/doi/10.1289/ehp.1408775
https://www.nature.com/articles/nbt.3299
https://www.altex.org/index.php/altex/article/view/34


Do we need 1000+ cell lines to study human variability?  

• Power calculations based on 

data from Abdo et al (2015)

• Resampled 1000+ 

individuals 

• Resampling across all 

tested chemicals 

How many individuals do we really need for in vitro screening? 

Sample sizes as small as 5 donors can be informative 

Reliable estimates with 20-100 individuals 

Chiu et al ALTEX 34(3):377-388, 20172015

Slide adapted from Ivan Rusyn 

https://www.altex.org/index.php/altex/article/view/34


Why are we interested?

• Test defined mixtures and the individual constituents 

• Use a population-based human in vitro model of LCLs

• Quantify toxicodynamic variability for chemicals and mixtures

• Identify potential drivers of variability through a GWAS 

What is our approach? 

•Because there is no standard approach to test human variability 
in mixtures risk assessment 

•Can we estimate the extent of population variability for mixtures? 

• Do we need to test both individual constituents and mixtures? 

• Is the extent of variability greater for mixtures than for chemicals?

• Can we apply the same uncertainty factor to mixtures and chemicals? 

Apply population-based in vitro methods to assess potential toxicity of 

component-based mixtures 



Experimental Design

Cell line-specific concentration 

response modeling

Lymphoblast cell lines from 4 

populations (N = 146)
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GWAS using cell line-specific PODs

Figures adapted from Ford et al., 2022 (PMID: 6006120)

CEU- Utah residents with European ancestry  

GBR- British from England and Scotland 

TSI- Tuscans in Italy

YRI- Yoruban from Ibadan, Nigeria 



Experimental Design
Chemical Selection and Design Mixtures

Figures adapted from Ford et al., 2022 (PMID: 6006120)

Pesticides (n=20)

HPV (n=8)

Heavy Metals (n=7)

PAHs (n=5)

Phthalates (n=2)



Experimental Design
Chemical Selection and Design Mixtures

Preparation of 8 Defined Mixtures



Donor-Specific Concentration-Response Profiling 
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• Comparison of PODs across 

populations 

• No significant differences 

across the 4 subpopulations 

• YRI (subpopulation from 

African descent) lowest 

median PODs

• None of the subpopulations 

significantly more or less 

susceptible 

Figures adapted from Ford et al., 2022 (PMID: 6006120)

Overall Distribution of PODS



Comparison Across Various In Vitro Models 

• Comparison of cytotoxic phenotypes for 

all models 

• Chemicals and mixtures previously 

screened using 5 human in vitro models 

(PMID: 33395322)

• LCL within range of other in vitro models 

Figures adapted from Ford et al., 2022 (PMID: 6006120)



Chemical-Specific Concentration-Response Profiling 
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• 28 chemicals exhibited 

cytotoxic effects

• 17/28 chemicals were 

pesticides 

• Heavy metals had the lowest 

EC10

• AC50 high had the lowest EC10

for mixtures and the largest 

variability across all cells 

• Median PODs for chemicals 

and mixtures were similar 

Figures adapted from Ford et al., 2022 (PMID: 6006120)



Quantifying Inter-Individual Variability 
Distribution of TDVF05
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Figures adapted from Ford et al., 2022 (PMID: 6006120)

𝑇𝐷𝑉𝐹05 =
𝐸𝐶10, 𝑚𝑒𝑑𝑖𝑎𝑛

𝐸𝐶10,5𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒



Quantifying Inter-Individual Variability 

0 0.5 1 1.5

Mixtures

Individual 
Chemicals 

Log10(TDVF05)

Distribution of TDVF05

Overall Distribution of TDVF05

• Pesticides had largest variability 

across all cells 

• AC50 had the largest variability 

across all cells 

• Median TDVF05 for chemicals and 

mixtures were similar

• Half a log higher than default for 

TDVF
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Figures adapted from Ford et al., 2022 (PMID: 6006120)



What are the potential molecular drivers of variability? 
GWAS Work Flow

Run GWAS analysis for top 

28 chemicals and mixtures 

Identify top gene hits for 

each chemical/mixture

Genes functions 

Gene expression in LCL 

Correlation across chemicals

Gene hits in mixtures and 

chemicals 

Research chemical exposure 

and gene of interest 

Figures adapted from Ford et al., 2022 (PMID: 6006120)



So what? 

• Lymphoblasts were in range with human iPSC-derived models 

• Quantified inter-individual variability for chemicals and mixtures 

• Population variability of mixtures does NOT exceed that of the most variable component 

• Similar TDVF05 for chemicals and mixtures, BUT higher median than the default uncertainty factor 
of 101/2

• Genome-wide associations among chemicals may be used to group constituents in a 
mixture 

This model is a reasonable approach to quantify inter-individual variability and can be used 

to reduce uncertainties with complex exposure scenarios



Study Limitations

Reflecting acute high-dose treatments 

Realistic routes of exposure

Limited chemical classes 

Model lacks metabolic function

Quantitative in vitro to in vivo 

extrapolation (QIVIVE)

In Vitro Data Exposure Data

Oral Equivalent Dose in Humans

Chronic exposures Routes of exposure

Image adapted from Yu-Syuan Luo



Where do we go from here? 

• Apply study design to evaluate toxicity of other defined and environmental 
mixtures 

• Screening realistic exposure scenarios using available biomonitoring data

• Use environmental samples to conduct region-specific exposure assessments

• Complimentary work has been done with additivity models to reconstruct the 
variability using the chemical data (Jang et al., 2022, under review) 



Probabilistic Concentration Addition of Defined Mixture 
Exposures in a Population-Based Human In Vitro Model 

• Characterizing inter-individual variability in cytotoxicity across 146 lymphoblast cell lines in 

42 priority chemicals and 8 mixtures (Ford et al., 2022)

Experimental Data

• POD = EC10 (concentration for 10% decline in viability) for each cell line, population GM, 

and population GSD 
• Toxicodynamic variability factor (TDVF01 = EC10,median/ EC10,1%) for 1% sensitive individual

Bayesian Dose-Response Modeling for Each Chemical and Mixture

Mixture Toxicity Prediction using Concentration Addition (CA) Methods

• Loewe Additivity Index (LAI): Ratio of experimentally measured mixture PODs to predicted 

mixture PODs using different CA methods (LAI<1: synergy, LAI >1: antagonism)
• Toxicodynamic Variability Factor at 1% (TDVF01) for Inter-individual variability

Comparisons Between Predicted and Measured Mixture PODmedian, POD1%, and TDVF01

CAIndiv: Apply CA to each individual (i) separately, then combine into population

PODmedian,mix

POD1%,mix

TDVF01,mix

{PODi}chem k {PODi}mix
GMmix

GSDmix

Fit Censored 

Lognormal

CA

CALNSum: Apply CA to overall lognormal population distribution (uncorrelated individuals)

{GM, 

GSD}chem k

PODmedian,mix

POD1%,mix

TDVF01,mix

GMmix, 

GSDmix
Lognormal

Sum Approximation

CADefault: Apply CA separately to median and sensitive individuals 

{PODmedian}chem k PODmedian,mix

POD1%,mix

TDVF01,mix{POD1%}chem k CA

CA

Figures adapted from Jang et al., 2022 (under review)

Can we use concentration additivity approaches to predict inter-individual variability in responses to mixtures?



Probabilistic Concentration Addition of Defined Mixture 
Exposures in a Population-Based Human In Vitro Model 

• Characterizing inter-individual variability in cytotoxicity across 146 lymphoblast cell lines in 

42 priority chemicals and 8 mixtures (Ford et al., 2022)

Experimental Data

• POD = EC10 (concentration for 10% decline in viability) for each cell line, population GM, 

and population GSD 
• Toxicodynamic variability factor (TDVF01 = EC10,median/ EC10,1%) for 1% sensitive individual

Bayesian Dose-Response Modeling for Each Chemical and Mixture

Mixture Toxicity Prediction using Concentration Addition (CA) Methods

• Loewe Additivity Index (LAI): Ratio of experimentally measured mixture PODs to predicted 

mixture PODs using different CA methods (LAI<1: synergy, LAI >1: antagonism)
• Toxicodynamic Variability Factor at 1% (TDVF01) for Inter-individual variability

Comparisons Between Predicted and Measured Mixture PODmedian, POD1%, and TDVF01
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Figures adapted from Jang et al., 2022 (under review)

Can we use concentration additivity approaches to predict inter-individual variability in responses to mixtures?

Concentration additivity models may 

underestimate potency 

Continue to use in vitro to test whole mixtures 

OR

Implement more stringent risk indices           

(ex: lower hazard index)

Ensure public health protection from combined 

exposures



Overall Conclusions

• Demonstrates feasibility of using population-based in vitro model that can be used in mixtures 
risk assessment

• Understand differences in inter-individual variability in responses to chemicals and mixtures 

• Provides chemical and mixture-specific variability estimates that can be used to replace default 
assumptions

• Various concentration addition (CA) approaches demonstrate inter-individual variability, but tend 
to underestimate both the in vitro experimental POD and TDVF values

• Results from CA predictions supports continuation of in vitro toxicity testing for mixtures 

Do we need in vitro systems to assess population-variability in responses 

to mixtures? 



Thank you!

Questions?


