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Guidance Document on Scientific criteria for grouping
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Abstract

2) Unknown com po sition of the mixtures This qidanc document provides harmonse nd lesble methodcloies o apply senic rraand

prioritisation methods for grouping chemicals into assessment groups for human risk assessment of
combined exposure to multiple chemicals. In the context of EFSA’s risk assessments, the problem
formulation step defines the chemicals to be assessed in the terms of reference usually through
regulatory criteria often set by risk managers based on legislative requirements. Scientific criteria such
Xposu re assessl I le n as hazard-driven criteria can be used to group these chemicals into assessment groups. In this
guidance document, a framework is proposed to apply hazard-driven criteria for grouping of chemicals
into assessment groups using mechanistic information on toxicity as the gold standard where available
(i.e. common mode of action or adverse outcome pathway) through a structured weight of evidence
. . . approach. However, when such mechanistic data are not available, grouping may be performed using
) EXI Stl n g rIS k aSS e SS m e nt m eth O d S re Iy O n d ata a common adverse outcome. Toxicokinetic data can also be useful for grouping, particularly when
metabolism information is available for a dass of compounds and common toxicologically relevant
metabolites are shared. In addition, prioritisation methods provide means to identify low-priority
- . . - chemicals and reduce the number of chemicals in an assessment group. Prioritisation methods include
fro m I n d IVI d u al C h e m I Cal S combined risk-based approaches, risk-based approaches for single chemicals and exposure-driven
approaches. Case studies have been provided to illustrate the practical application of hazard-driven
criteria and the use of prioritisation methods for grouping of chemicals in assessment groups.
Recommendations for future work are discussed.

[ N 1 h 1 k f © 2021 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf
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l I l Ixtu reS Keywords: harmonised methodologies, human risk assessment, combined exposure to multiple
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Why are we interested in population-based in vitro methods?

Traditional Toxicity Testing New Approach Methods for Population-Based Human In
Methods: In Vivo Toxicity Testing: In Vitro Vitro Models

« Time and labor-intensive, » Faster, cheaper, and higher- « Human lymphoblast cell lines
expensive, and low throughput (1,000+ donors)
throughput » Ability to look at biologically- « Human induced pluripotent

« Challenges with relevant phenotypes stem cell-derived
extrapolation to humans « Can evaluate inter-individual cardiomyocytes (~43 donors)

* Models often overlook and inter-species variability » Assess inter-individual and
inter-individual variability * Reduces use of animal chemical-specific variability

 Ethical concerns testing « Translation to humans
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Why do toxicity testing in human Iymphoblast CeII Ilnes’?

.
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https://www.sciencedirect.com/science/article/pii/S0160412015300520?via%3Dihub
https://ehp.niehs.nih.gov/doi/10.1289/ehp.1408775
https://www.nature.com/articles/nbt.3299
https://www.altex.org/index.php/altex/article/view/34

Do we need 1000+ cell lines to study human variability?

How many individuals do we really need for in vitro screening?

Individual-based prediction(niqy = 1086)

o | E © 7 - Default uncertainty
. — === D Data uncertainty
- Power calculations based on z  _ 035 GSDr o1 74 SRS — Data+Default uncertainty
data from Abdo et al (2015) . 2 - g ]
« Resampled 1000+ < o =
. .. »n o =
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_ 5 < S OO | OO OO O O RSO O RO OO RO PP ORORPROY
* Resampling across all s 2| 2 a l;
tested chemicals § o S = {1
E - —e— Posterior median and 90% Cl § - “ -
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g n

g50/q01 ratio = TDVF = 10"°"M

Sample sizes as small as 5 donors can be informative
Reliable estimates with 20-100 individuals
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https://www.altex.org/index.php/altex/article/view/34

Exposure Assessment

Why are we interested?

* Because there is no standard approach to test human variability
INn mixtures risk assessment
« Can we estimate the extent of population variability for mixtures?
* Do we need to test both individual constituents and mixtures?
* |s the extent of variability greater for mixtures than for chemicals?

" 1 ) . [ )T .
« Can we apply the same uncertainty factor to mixtures and chemicals? [EYEYSYRY | Cremicals
What is our approach?  ARAA.

U' : h Mixtures

Apply population-based in vitro methods to assess potential toxicity of
component-based mixtures

Human Varlablllty

« Test defined mixtures and the individual constituents
* Use a population-based human in vitro model of LCLs ﬂ' ﬂ ﬂ
» Quantify toxicodynamic variability for chemicals and mixtures

« ldentify potential drivers of variability through a GWAS T T T p——
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Experimental Design
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Experimental Design

Chemical Selection and Design Mixtures
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DDT, O,P'-
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L
TRICHLOROBENZENE
LEAD NITRATE
CADMIUM CHLORIDE
ZINC CHLORIDE
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POTASSIUM
CHROMATE
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NICKEL CHLORIDE

CAS
205-99-2

1582-09-8
83-32-9
72-54-8
92-87-5

115-25-7
72-43-5
51-28-5

121-14-2

115-32-2

106-44-5

789-02-6

534-52-1

87-61-6
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10108-64-2
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Class
PAH
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PAH
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Pest
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Metal
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e This Experiment  * CERAPP

Pesticides (n=20)
HPV (n=8)

Heavy Metals (n=7)
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Experimental Design

Preparation of 8 Defined Mixtures

Chemical Selection and Design Mixtures . —
Active In vitro toxicity
Concentration 50% | mmmp | data from ToxCast/
ID  SUBSTANCE NAME CAs Class ID SUBSTANCE NAME CAS Class (ACso) Tox21
1 BENZO(A)ANTHRACENE 56-55-3 PAH BENZO(B)FLUORANTHE
2 NAPHTHALENE 91-20-3 PAH 22 NE 205-99-2 PAH
3 FLUORANTHENE 206-44-0  PAH | [23  TRIFLURALIN 1582-09-8 Pest T POD derived from
4 DDT, P,P"- 50-29-3  Pest | g ACENAPHTHENE 83-32-9 PAH : parwu - experimental
5 DIELDRIN 60-57-1 Pest = 50D, PP 40 a8 Pest (POD) animal studies
6 ALDRIN 309-00-2 Pest "
7 HEPTACHLOR 76-44-8 Pest 26 BENZIDINE 92-87-5 HPV
8 LINDANE 58-890-9 Pest 27 ENDOSULFAN 115-29-7 Pest
9 DISULFOTON 298-04-4  Pest 28 METHOXYCHLOR 72-43-5 Pest Exposure
10 ENDRIN 72-20-8 Pest 29 2,4-DINITROPHENOL 51-28-5 Pest Exposure (Expo) —) estimates from
30 2,4-DINITROTOLUENE  121-14-2 HPV ExpoCast
11 DIAZINON 333-41-5 Pest
31 DICOFOL 115-32-2 Pest
12 HEPTACHLOREPOXIDE 1024-57-3  Pest 32 CRESOL, PARA- 106.44-5 HPV Experimental
13 PENTACHLOROPHENOL  87-86-5 HPV 33 DDT, O,P'- 789-02-6  Pesticide e
i» | [B44,6-DINITRO-O-CRESOL  534-52-1 HPV Reference Dose 2
14 DI-N-BUTYLPHTHALATE  84-74-2 Plastiz ’ (RfD) converted to oral
1,2,3- . .
15 CHLORPYRIFOS 2921-88-2  Pest 33 TRICHLOROBENZENE 87-61-6 HPV equivalent dose in
16 DI(2- 117817  Plastiz | [36 LEAD NITRATE 10099-74-8  Metal humans
I i Oy 37 CADMIUMCHLORIDE  10108-64-2  Metal l
17 2,4,6-TRICHLOROPHENOL  88-06-2 HPV
38  ZINC CHLORIDE 7646-85-7 Metal
18 ETHION >63-12-2 Pest 39 MERCURICCHLORIDE  7487-94-7 Metal LOW: median HIGH: 95t
19 AZINPHOS-METHYL 86-50-0 Pest 10 Eﬁ;ﬁiﬂg 7789-00-6 Metal values for each percentile for each
] _95- assumption assumption
20 2,4,5-TRICHLOROPHENOL 95-95-4 HPV 41 COBALT CHLORIDE 646.79.9 p— Y Y
21 PARATHION 56-38-2 Pest 42  NICKEL CHLORIDE 7718-54-9 Metal
TEXAS A&M UNIVERSITY
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Donor-Specific Concentration-Response Profiling

Cell Line

Chemical PODs
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« Comparison of PODs across
populations

» No significant differences
across the 4 subpopulations

YRI (subpopulation from
African descent) lowest
median PODs

* None of the subpopulations
significantly more or less
susceptible
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Figures adapted from Ford et al., 2022 (PMID: 6006120)



Comparison Across Various In Vitro Models

LCLs— — [H
HUVECH « Comparison of cytotoxic phenotypes for
Cardio- ¥ all models
Endo | o « Chemicals and mixtures previously
screened using 5 human in vitro models
Heps+ — 1 H (PMID: 33395322)
N — iy . .
eurons — _' « LCL within range of other in vitro models
I I I I I I
-3 -2 -1 0 1 2 3
Chemicals mEC,y (U M)
LCLs b
HUVEC- H —
Cardio — —
Neurons — — —
Endo
Heps-{ H———— :
[ I I I I |
3 2 A 0 1

Mixtures mEC o (UM) TEXAS A&M UNIVERSITY
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Figures adapted from Ford et al., 2022 (PMID: 6006120)



Chemical-Specific Concentration-Response Profiling

Distribution of PODs

DDT, P,P'-+ — %
Disulfoton— —_Th
DDD, P,P'-+ — |
Chlorpyrifos— —L TH
Dicofol— — Tk
Pentachlorophenol T
Nickel (CI")~ — Tk
Diazinon —L Th
*2,4,5-Trichlorophenol H__Th
Methoxychlor— —{ Tk
DDT, O,P'- —_THh
Di-N-Butyl Phthalate —_Th
4,6-Dinitro-O-Cresol - —H_ThH
Ethion— s I
Azinphos-Methyl— —{1TH
Parathion— — TH
2,4,5-Trichlorophenol - T M+
Endrin— —{ 1T H
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Overall Distribution of PODs

Individual
Chemicals | B

Defined |
Mixtures

— [ H

« 28 chemicals exhibited
cytotoxic effects

 17/28 chemicals were
pesticides

» Heavy metals had the lowest

* AC, high had the lowest EC,,

-1 0 1 2
Log10(EC10, UM)

for mixtures and the largest
variability across all cells

» Median PODs for chemicals
and mixtures were similar
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Quantifying Inter-Individual Variability

TDVFE.. = 10 median
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Quantifying Inter-Individual Variability

Distribution of TDVF05
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« Pesticides had largest variability

across all cells
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Figures adapted from Ford et al., 2022 (PMID: 6006120)



What are the potential molecular drivers of variability?
GWAS Work Flow i

Run GWAS analysis for top
28 chemicals and mixtures
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Figures adapted from Ford et al., 2022 (PMID: 6006120)



So what?

« Lymphoblasts were in range with human IPSC-derived models

« Quantified inter-individual variability for chemicals and mixtures
* Population variability of mixtures does NOT exceed that of the most variable component

« Similar TDVF; for chemicals and mixtures, BUT higher median than the default uncertainty factor
of 1012

« Genome-wide associations among chemicals may be used to group constituents in a
mixture

This model is a reasonable approach to quantify inter-individual variability and can be used
to reduce uncertainties with complex exposure scenarios
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Study Limitations

Quantitative in vitro to in vivo
extrapolation (QIVIVE)

In Vitro Data Exposure Data

!

Reflecting acute high-dose treatments _ _
Oral Equivalent Dose in Humans

Model lacks metabolic function

. Chronic exposures Routes of exposure
Realistic routes of exposure [
/ y . Oral equivalent dose
Limited chemical classes %& I Vitro-to-In Vivo Extrapolation |
8 ﬁ | : ‘7

@ " “Bioactive”

In vitro point of depz:rture, “bioactive” concentration & concentration

TR R - J
1mg/kg/day

OEDs = PODs X
Css
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Where do we go from here?

« Apply study design to evaluate toxicity of other defined and environmental
mixtures

« Screening realistic exposure scenarios using available biomonitoring data
« Use environmental samples to conduct region-specific exposure assessments

« Complimentary work has been done with additivity models to reconstruct the
variability using the chemical data (Jang et al., 2022, under review)
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Probabilistic Concentration Addition of Defined Mixture
Exposures in a Population-Based Human In Vitro Model

Can we use concentration additivity approaches to predict inter-individual variability in responses to mixtures?

Experimental Data

» Characterizing inter-individual variability in cytotoxicity across 146 lymphoblast cell lines in
42 priority chemicals and 8 mixtures (Ford et al., 2022)

ot

‘ Bayesian Dose-Response Modeling for Each Chemical and Mixture

<
* POD = ECy, (concentration for 10% decline in viability) for each cell line, population GM,

and population GSD
* Toxicodynamic variability factor (TDVFq; = ECyg median/ EC10,1%) for 1% sensitive individual

e

Mixture Toxicity Prediction using Concentration Addition (CA) Methods

[

CAnaiv: Apply CA to each individual (i) separately, then combine into population

IDODmedian,mix
PODl%,mix
TDVFOl mix

GM ix >
{PODi}chemk {PODi}miX

CAnsum: Apply CA to overall lognormal population distribution (uncorrelated individuals)

Y1
IDODmedian,mix
| Lognormal >

PODl%,mix
Sum Approximation \__ TDVFoi,mix

L

ognormal

CApefauit: Apply CA separately to median and sensitive individuals

 bAPL
{PODmedian}chem k| | CA > PODmedian,mix

PODl%,mix
\ {PODI%}chem k [ CA > \ TDVFOl mix //

< >

‘ Comparisons Between Predicted and Measured Mixture POD,¢gian, POD15, and TDVFy,

* Loewe Additivity Index (LAI): Ratio of experimentally measured mixture PODs to predicted
mixture PODs using different CA methods (LAI<1: synergy, LAl >1: antagonism)

* Toxicodynamic Variability Factor at 1% (TDVFg,) for Inter-individual variability TEXAS A&M UNIVERSITY
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Probabilistic Concentration Addition of Defined Mixture
Exposures in a Population-Based Human In Vitro Model

Can we use concentration additivity approaches to predict inter-individual variability in responses to mixtures?

Concentration additivity models may
underestimate potency

!

Continue to use in vitro to test whole mixtures
OR
Implement more stringent risk indices
(ex: lower hazard index)

!

Ensure public health protection from combined
exposures

Measured 4

CA-Indiv1

CA-LNSum+

CA-Default

Measured 4

CA-Indiv1

CA-LNSum

CA-Default 1

10 100 1 10 100 1 10 00 1 10 100
TDVF01 = (EC10 Median) / (EC10 Sensitive 1st percentile)
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Overall Conclusions

Do we need In vitro systems to assess population-variability in responses
to mixtures?
« Demonstrates feasibility of using population-based in vitro model that can be used in mixtures
risk assessment
» Understand differences in inter-individual variability in responses to chemicals and mixtures

» Provides chemical and mixture-specific variability estimates that can be used to replace default
assumptions

« Various concentration addition (CA) approaches demonstrate inter-individual variability, but tend
to underestimate both the in vitro experimental POD and TDVF values

» Results from CA predictions supports continuation of in vitro toxicity testing for mixtures
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Thank you!

Questions?



