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Goals
• Provide Hill-like criteria for assessing consistency of data 

with the hypothesis of a manipulative causal exposure-
response, using information rather than association 
– How much will changing exposure X change subsequent

probability distribution of effect Y, given levels of other direct 
causes of Y (e.g., age, sex, smoking, income)?
• Not association-based (Hill/IARC/regression), attributive (burden of 

disease), predictive (Granger), counterfactual/ potential outcomes 
(propensity score, MSM), structural (Simon), mechanistic, or but-for 
(legal) causation

– Needed for decisions and policy recommendations
– Information in bits = reduction in conditional entropy of Y | X

• Minimize or eliminate untested assumptions
– Use causal graphs to articulate and test causal hypotheses

• Direct effects, total effects, CPTs, pathways of mechanisms

– Test invariant causal predictions (ICP) vs. make counterfactual 
assumptions
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Example of an information-based DAG:  
What exactly does it mean?

3

Direct vs. total effects of age and income 
on heart disease risk 
Arrow = not conditionally independent of
Ambiguity of counterfactual income levels

Cox LA. Jr. 2018. Socioeconomic and particulate air 

pollution correlates of heart disease risk. Environ Res. 

167:386–392. CDC BRFSS data set



Many packages provide algorithms and principles 
to identify (causal) DAGs from data

• Conditional independence (constraint-based algorithms):  
Causes are informative about their effects
– dagitty, bnlearn packages;  CompareCausalNetworks package

• Likelihood principle (score-based algorithms):  Valid causal 
models explain the data (i.e., make it not too unlikely).
– Choose DAG model to maximize likelihood of data (bnlearn package)

• Composition principle: If X → Z → Y, then dy/dx = (dz/dx)*(dy/dz)

– Path analysis, lavaan package

• Granger principle: Predictively useful information flows from 
causes to their effects over time (granger.test, bnstruct)

• Model error specification principle:  Causes reveal simplicity
– effect = f(cause) + error; LiNGAM packages

• Invariance of causal CPTs (InvariantCausalPrediction package): 
Completely decribed causal relationships are universal
– Peter et al. (2015)  http://stat.ethz.ch/~nicolai/invariant.pdf 4

http://stat.ethz.ch/~nicolai/invariant.pdf


Proposed criteria for consistency with 
manipulative causal exposure-response

1. Mutual information:  Causes are informative 
about their direct effects.  

2. Directed dependence:  Information flows from 
causes to effects over time

3. Internal consistency:  Estimates of the same 
effect using different adjustment sets (e.g., 
common causes) are not significantly different

4. External consistency:  Invariant causal prediction 
(ICP):  Response conditional probability table 
(CPT) does not differ across studies
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Proposed criteria for manipulative 
causal exposure-response

5. Coherence:  Path from exposure to response 
through causal biological network

6. Causal mediation confirmation:  Changes in 
exposure explain quantitative changes in 
mediating variables and resulting response(s)

– Chain of accountability (HEI): X → Z → Y 

7. Refutation: Data reject alternative (non-
causal) explanations 
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Directed acyclic graph (DAG) model

• What does it mean?
– Arrows into Smoking?
– Non-causal (BN): factors joint pdf
– Causal:  CPTs also represent 

invariant causal mechanisms

• When are arrows “causal”?
– Directed information flow
– Homogeneous CPTs (latent vars.)

• How to learn DAG from data?
– Test conditional independence 

implications, CPT invariance and 
homogeneity, compositionality 

• Use in risk assessment?
– Partial dependence plots for direct 

and total causal effects of interest

• How trustworthy are the results?
– Non-parametric model ensembles
– Robustness to different algorithms 

and principles 
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Arrows represent dependence (mutual 
information) between variables 

Not necessarily manipulative causation

Some causal links lack clear directions 
(MaritalStatus Income)



Estimating a response CPT
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• What does it mean?
– Arrows into Smoking?
– Non-causal (BN): factors joint pdf
– Causal:  CPTs also represent 

invariant causal mechanisms

• When are arrows “causal”?
– Directed information flow
– Homogeneous CPTs (latent vars.)

• How to learn DAG from data?
– Test conditional independence 

implications, CPT invariance and 
homogeneity, compositionality 

• Use in risk assessment?
– Partial dependence plots for direct 

and total causal effects of interest

• How trustworthy are the results?
– Non-parametric model ensembles
– Robustness to different algorithms 

and principles 



Model = dependencies + causal CPTs
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Partial dependence plot for natural 
direct causal effect in DAG model 
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Risk of heart disease



Updating Hill for manipulative 
causation: Mutual information
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Bradford-Hill considerations Modern causal discovery and inference principles 

Strength of association:  Stronger 

associations are more likely to be 

causal 

• Mutual information principle:  Causes are informative 

about their direct effects and help to predict their values. 

• Conditional independence version:  Effects are not 

conditionally independent of their direct causes.  

• Direct causes contain at least as much information about 

their effects as do more remote indirect causes 

Consistency of findings across 

populations, study designs, times, 

locations, investigators, etc. 

• Internal consistency: Similar effects are estimated using 

different adjustment sets 

• External consistency: Causal laws, expressed as     

conditional probability tables (CPTs), are invariant, 

homogeneous, and transportable across study settings 

 

Hill’s strength and consistency considerations often fail (mislead) in practice (Ioannidis, 
2016; Pearl and Mackenzie, 2018).  Strong association usually indicates strong biases or 
confounding.  Consistency of effects estimates (e.g., regression coefficients) in different 
populations may indicate common omitted confounders, p-hacking.

Mutual information (arrow in DAG) provides a useful non-parametric alternative

Mutual information may be positive even if correlation is zero (y = x2) or zero even if 
correlation is positive (spurious regression) 



Direct causes are adjacent to their 
effects in valid causal graphs
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Bradford-Hill considerations Modern causal discovery and inference principles 

Strength of association:  Stronger 

associations are more likely to be 

causal 

• Mutual information principle:  Causes are informative 

about their direct effects and help to predict their values. 

• Conditional independence version:  Effects are not 

conditionally independent of their direct causes.  

• Direct causes contain at least as much information about 

their effects as do more remote indirect causes 

Consistency of findings across 

populations, study designs, times, 

locations, investigators, etc. 

• Internal consistency: Similar effects are estimated using 

different adjustment sets 

• External consistency: Causal laws, expressed as     

conditional probability tables (CPTs), are invariant, 

homogeneous, and transportable across study settings 

 
No evidence in DAG that PM2.5 is a direct cause 
of increased heart disease risk (adjacency)

Can bound maximum size of undetected effect 
(missing arrow)



Updating Hill for manipulative 
causation:  Consistency
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Bradford-Hill considerations Modern causal discovery and inference principles 

Strength of association:  Stronger 

associations are more likely to be 

causal 

• Mutual information principle:  Causes are informative 

about their direct effects and help to predict their values. 

• Conditional independence version:  Effects are not 

conditionally independent of their direct causes.  

• Direct causes contain at least as much information about 

their effects as do more remote indirect causes 

Consistency of findings across 

populations, study designs, times, 

locations, investigators, etc. 

• Internal consistency: Similar effects are estimated using 

different adjustment sets 

• External consistency: Causal laws, expressed as     

conditional probability tables (CPTs), are invariant, 

homogeneous, and transportable across study settings 

 External consistency:  Invariant causal prediction (ICP) property of CPTs across studies 
provides a testable foundation for making unambiguous counterfactual predictions.

Homogeneity of CPTs within and across studies provides a testable basis for managing 
latent variables.  (If homogeneity fails, use finite mixture distributions, HMMs, etc.)



Invariant causal prediction (ICP)

• Testable property of response CPTs 

– Study ID does not help to predict response

• Uses of ICP:

– Generalize from individual study results

• Invariant causal CPTs can be “transported” across study 
settings, allowing predictions in novel settings

– Synthesize studies with overlapping variables

– Detect omitted/unobserved causes (latent variables) 
via homogeneity tests of response CPTs

• Provides sound basis for counterfactual causality
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ICP addresses challenge of ambiguous (model-
dependent) counterfactual predictions
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Results 
depend on 
modeling 
choices

Scientific Method



Updating Hill for manipulative causation: 
Orienting arrows with data constraints
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Temporality: Causes precede their 

effects 

• Directed dependence principle:  Information flows from 

causes to their effects over time. 

• Predictive causation principle: Changes in causes help to 

predict changes in their effects 

• Techniques: Granger causality tests, transfer entropy, 

directed information graphs, dynamic Bayesian networks 

• LiNGAM principle for linear non-Gaussian models:  

Prediction error distributions vary simply and predictably 

with predicted values 

 
There are many ways to orient arrows from data (Granger, DBN, DIG, homoscedasticity, 
exogeneity, compositionality …)

But directions of some arrows may not be uniquely determined by data, or may not be 
clearly defined/interpretable conceptually → Data constrain possible causal graphs
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Biological plausibility:  Exposure-

response association has a 

plausible biological mechanism 

 

Coherence: Agrees with 

knowledge of disease biology 

• Coherent structural causation:  Effects are derived from 

their causes.  Directed paths lead from causes (e.g., 

doses) to their effects (e.g., responses) in a causal graph 

• Coherent causal explanation:  A valid causal graph 

explains the observed data  

• Exposures affect response probabilities via pathways 

(sequences of mechanisms in a causal biological graph)   

 
Coherent causal explanation/biological plausibility: Identify paths (explanations) from 
exposure to response through causal biological network, consistent with data

QRA:  exposure → [PBPK] → internal dose → [PD] → response

Causal mediation confirmation:
Compositionality: If X → Z → Y is valid, then dY/dX = (dY/dZ)(dZ/dX)
Chapman-Kolmogorov:  P(y | x) = zP(z | x)P(y | z)

Updating Hill for manipulative 
causation:  Coherent explanation



Special cases in Hill considerations
(No new criteria needed)
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Experiment: Reducing exposure 

reduces effect 

• Exogenous changes in causes produce predictable 

changes in the probability distributions of their effects that 

can be calculated via CPTs. 

Specificity of effects: A specific 

cause produces a specific effect 

• Connectivity:  One or more directed paths in a causal 

graph lead from causes to their effects.   

• Direct effects of a cause are its children in a causal graph 

Biological gradient: Larger 

responses at higher exposures 

• Variations in direct causes help to predict and explain 

variations in their (possibly joint) effects via a CPT 

 



Final step:  Refute alternative (non-
causal) explanations
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Non-causal explanation Methods for addessing non-causal associations 

Unobserved (latent) confounders 

(Pearl and Mackenzie,  2018) 

These can be tested for and their effects modeled and controlled for using the 

Tetrad, Invariant Causal Prediction, and BACKSHIFT algorithms, among others. 

Spurious regression in time series 

or spatial observations with trends 

(Yule, 1926) 

Spurious regression arising from coincident trends can be detected and avoided 

by using conditional independence tests and predictive causation (e.g., Granger 

causality) instead of regression models. 

Collider bias; stratification or 

selection bias (Cole et al., 2010; 

Pearl and Mackenzie,  2018) 

A study that stratifies or matches individuals on certain variables, such as 

membership in an occupation, or an analysis that conditions on certain 

variables by including them on the right-hand side of a regression model, can 

induce exposure-response associations if the variables conditioned, matched, 

or stratified on are common descendents of the exposure and response 

variables.  The association does not indicate causality between exposure and 

response, but that they provide alternative explanations of an observed value.  

Such biases can be avoided by using dagitty to compute adjustment sets and 

conditioning only on variables in an adjustment set.     

 



Refute non-causal explanations for 
exposure-response association
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Other threats to internal validity 

(Campbell and Stanley, 1963) 

Threats to internal validity (e.g., regression to the mean, coincident historical 

trends, sample selection or attrition biases, reporting biases, etc.) were 

enumerated by Campbell and Stanley (1963), who also discuss ways to refute 

them as plausible explanations, when possible, using observational data. 

Model specification errors (Lenis 

et al., 2018;  Linden et al., 2017; 

Pirracchio et al., 2015) 

Model specification errors arise when an analysis assumes a particular 

parametric modeling form that does not accurately describe the data-generating 

process.  Assuming a linear regression model when there are nonlinear effects 

present is one example; omitting high-order interactions terms is another. Model 

specification errors can be avoided by using non-parametric model ensemble 

methods such as PDPs. 

P-hacking, i.e., adjusting modeling 

assumptions to produce an 

association (e.g., a statistically 

significantly positive regression 

coefficient). (Fraser et al., 2018) 

Automated modeling using CAT or packages such as randomForest and 

bnlearn to automate modeling choices such as which predictors to select, how 

to code them (i.e., aggregate their values into ranges), and which high-order 

interactions to include can help to avoid p-hacking biases.   

 



Refute non-causal explanations for 
exposure-response association
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Omitted errors in explanatory 

variables.  (Rhomberg et al., 2011) 

Using job exposure matrices, remote-sensing and satellite imagery for pollutant 

concentration estimation, or other error-prone techniques for estimating 

exposures, creates exposure estimates for individuals that can differ 

substantially from their true exposures.  In simple regression models, omitting 

errors from the estimated values of explanatory variables tends to bias 

regression coefficients toward the null (i.e., 0), but the bias can be in either 

direction in multivariate models, and failing to carefully model errors in 

explanatory variables can create false-positive associations.  These errors and 

biases can be avoided by modeling errors in explanatory variables.  

Omitted interdependencies among 

explanatory variables. (Pearl and 

Mackenzie,  2018; Textor et al., 

2016) 

Regression models that ignore dependencies among right-hand side variables 

can create non-causal exposure-response associations.  This can be avoided 

by using dagitty to compute adjustment sets for the causal effect of exposure on 

response and then conditioning on variables in an adjustment set to estimate 

that effect. 

 



Proposed criteria can be made 
operational via statistical tests
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Criterion Test Methods 

Mutual 

information 

Reject null hypothesis that Y is 

conditionally independent of X 

Reject null hypothesis if X and Y are 

linked in DAG models learned from 

data by causal discovery algorithms 

(e.g., those in the bnlearn package).  

Other tests for independence (e.g., 

chi-squared tests) can also be used. 

 

Directed 

dependence 

For longitudinal data: Reject null 

hypothesis that future values of Y are 

conditionally independent of past values 

of X, even after conditioning on past 

values of Y and other variables. 

 

For cross sectional data:  Reject null 

hypothesis that direction of dependence 

is undetermined by data. 

Reject null hypothesis if X and Y are 

linked in DBNs or DIGs learned from 

data (e.g., via the bnstruct package).  

Granger tests can also be used for 

time series data. 

 

Reject null hypothesis if constraints 

determining the direction of an arrow 

can be identified from data (e.g., 

using LiNGAM, BACKSHIFT, or 

Simon-Iwasaki causal ordering)  

 



Operational criteria
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Internal 

consistency 

Do not reject null hypothesis that effects 

estimated from different adjustment sets 

are the same 

Reject null hypothesis if confidence 

bands for effects estimated from 

different adjustment sets do not 

overlap. 

 

External 

consistency 

Do not reject null hypothesis that 

response CPTs estimated from different 

studies or data sets are the same 

Reject null hypothesis if study ID is a 

parent of response in DAG models 

learned from data. 

 

Causal 

mediation 

confirmation 

Do not reject the null hypothesis that 

variations in Y caused by variations in X 

are explained by resulting variations in 

mediating variables (e.g., as described 

by the Chapman-Kolmogorov identities 

implied by an explanation in the form of 

a probabilistic causal graph model) 

Reject null hypothesis if variations in 

mediating variables do not explain 

variations in Y for different values of 

X (e.g., if a chi-squared test rejects 

the conditional independence and 

Chapman-Kolmogorov implications of 

the explanation). 

 



Operational criteria
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Causal 

coherence & 

biological 

plausibility 

Reject the null hypothesis that identified 

biologically plausible pathway(s) 

directed from X to Y cannot explain the 

observed dependence of Y on X 

Reject the null hypothesis if one or 

more biologically plausible coherent 

causal explanations (pathways in a 

causal biological network) are 

identified that can explain the 

dependence of Y on X. 

 

Refutation of 

non-causal 

explanations 

Reject the null hypothesis that the 

observed statistical dependence of Y on 

X has a non-causal explanation 

Reject the null hypothesis if threats to 

validity are refuted (Campbell and 

Stanley, 1963). 

 



Summary:  Information-based causal 
perspectives

• Focus specifically on manipulative causation
• Quantify causal exposure-response dependence  

– Multiple paths/explanations for association
• Qualitative determination of causality is not well-defined

– Partial dependence plots for effects of interest

• Connect exposure to response probability via paths in causal 
graphs and causal biological networks

• Test implications of hypothesized manipulative causal 
exposure-response explanations using data
– Mutual information, directed information flow, internal and 

external consistency (ICP), coherent explanation, CMC

• Refute non-causal explanations using data
• Result:  Assess consistency of evidence with manipulative 

causal interpretation of exposure-response dependence using 
information in data sets
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Thanks!
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