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Goals

* Provide Hill-like criteria for assessing consistency of data
with the hypothesis of a manipulative causal exposure-
response, using information rather than association

— How much will changing exposure X change subsequent

probability distribution of effect Y, given levels of other direct
causes of Y (e.g., age, sex, smoking, income)?

* Not association-based (Hill/IARC/regression), attributive (burden of
disease), predictive (Granger), counterfactual/ potential outcomes
(propensity score, MSM), structural (Simon), mechanistic, or but-for
(legal) causation

— Needed for decisions and policy recommendations
— Information in bits = reduction in conditional entropy of Y | X

 Minimize or eliminate untested assumptions
— Use causal graphs to articulate and test causal hypotheses
* Direct effects, total effects, CPTs, pathways of mechanisms

— Test invariant causal predictions (ICP) vs. make counterfactual
assumptions



Example of an information-based DAG:
What exactly does it mean?

>
Direct vs. total effects of age and income
on heart disease risk

Cox LA. Jr. 2018. Socioeconomic and particulate air Arrow = not conditionally independent of

pollution correlates of heart disease risk. Environ Res. Ambiguity of counterfactual income Iev%ls
167:386-392. CDC BRFSS data set



Many packages provide algorithms and principles
to identify (causal) DAGs from data

* Conditional independence (constraint-based algorithms):
Causes are informative about their effects

— dagitty, bnlearn packages; CompareCausalNetworks package
» Likelihood principle (score-based algorithms): Valid causal
models explain the data (i.e., make it not too unlikely).
— Choose DAG model to maximize likelihood of data (bnlearn package)
 Composition principle: If X > Z — Y, then dy/dx = (dz/dx)*(dy/dz)
— Path analysis, lavaan package
* Granger principle: Predictively useful information flows from
causes to their effects over time (granger.test, bnstruct)
 Model error specification principle: Causes reveal simplicity
— effect = f(cause) + error; LINGAM packages
* Invariance of causal CPTs (/nvariantCausalPrediction package):
Completely decribed causal relationships are universal
— Peter et al. (2015) http://stat.ethz.ch/~nicolai/invariant.pdf



http://stat.ethz.ch/~nicolai/invariant.pdf

Proposed criteria for consistency with
manipulative causal exposure-response

1.

2.

Mutual information: Causes are informative
about their direct effects.

Directed dependence: Information flows from
causes to effects over time

Internal consistency: Estimates of the same
effect using different adjustment sets (e.g.,
common causes) are not significantly different

External consistency: Invariant causal prediction
(ICP): Response conditional probability table
(CPT) does not differ across studies



Proposed criteria for manipulative
causal exposure-response

5. Coherence: Path from exposure to response
through causal biological network

6. Causal mediation confirmation: Changes in
exposure explain quantitative changes in
mediating variables and resulting response(s)

— Chain of accountability (HEl): X > Z —> Y

/. Refutation: Data reject alternative (non-
causal) explanations



Directed acyclic graph (DAG) model

What does it mean? i (hoe)
— Arrows into Smoking?

— Non-causal (BN): factors joint pdf Education (MaritalStatus >

— Causal: CPTs also represent
invariant causal mechanisms

When are arrows “causal”? @

— Directed information flow

— Homogeneous CPTs (latent vars.)

How to learn DAG from data?

— Test conditional independence -
implications, CPT invariance and
homogeneity, compositionality
Use in risk assessment? Arrows represent dependence (mutual

— Partial dependence plots for direct information) between variables

and total causal effects of interest

How trustworthy are the results? Not necessarily manipulative causation
— Non-parametric model ensembles
— Robustness to different algorithms Some causal links lack clear directions

and principles (MaritalStatus <> Income)



Estimating a response CPT

HeartDiseaseEver
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What does it mean?
— Arrows into Smoking?
— Non-causal (BN): factors joint pdf ol

— Causal: CPTs also represent
invariant causal mechanisms

When are arrows “causal”?
— Directed information flow
— Homogeneous CPTs (latent vars.) 0.05 |

How to learn DAG from data?
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Use in risk assessment?

— Partial dependence plots for direct
and total causal effects of interest

How trustworthy are the results?

— Non-parametric model ensembles

— Robustness to different algorithms
and principles
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Model = dependencies + causal CPTs

Systems Biology of Human Aging - Network Model 2018
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Partial dependence plot for natural
direct causal effect in DAG model

Partial Dependence on "lncome”

0.100

0.095

Risk of heart disease

0.0865 0.090
l |




Updating Hill for manipulative
causation: Mutual information

Strength of association: Stronger e Mutual information principle: Causes are informative
associations are more likely to be about their direct effects and help to predict their values.
causal e Conditional independence version: Effects are not
conditionally independent of their direct causes.
e Direct causes contain at least as much information about
their effects as do more remote indirect causes

Hill’s strength and consistency considerations often fail (mislead) in practice (loannidis,
2016; Pearl and Mackenzie, 2018). Strong association usually indicates strong biases or
confounding. Consistency of effects estimates (e.g., regression coefficients) in different
populations may indicate common omitted confounders, p-hacking.

Mutual information (arrow in DAG) provides a useful non-parametric alternative

Mutual information may be positive even if correlation is zero (y = x?) or zero even if

correlation is positive (spurious regression)
11



Direct causes are adjacent to their
effects in valid causal graphs

Strength of association: Stronger
associations are more likely to be

causal

Mutual information principle: Causes are informative
about their direct effects and help to predict their values.
Conditional independence version: Effects are not
conditionally independent of their direct causes.

Direct causes contain at least as much information about
their effects as do more remote indirect causes

(hee)

artsistaus
No evidence in DAG that PM2.5 is a direct cause

Cincome)

of increased heart disease risk (adjacency)

Can bound maximum size of undetected effect
(missing arrow)
12



Updating Hill for manipulative
causation: Consistency

Strength of association: Stronger
associations are more likely to be
causal

Consistency of findings across
populations, study designs, times,
locations, investigators, etc.

Mutual information principle: Causes are informative
about their direct effects and help to predict their values.
Conditional independence version: Effects are not
conditionally independent of their direct causes.

Direct causes contain at least as much information about
their effects as do more remote indirect causes

Internal consistency: Similar effects are estimated using
different adjustment sets

External consistency: Causal laws, expressed as
conditional probability tables (CPTs), are invariant,
homogeneous, and transportable across study settings

External consistency: Invariant causal prediction (ICP) property of CPTs across studies
provides a testable foundation for making unambiguous counterfactual predictions.

Homogeneity of CPTs within and across studies provides a testable basis for managing
latent variables. (If homogeneity fails, use finite mixture distributions, HMMs, etc.) 13



Invariant causal prediction (ICP)

e Testable property of response CPTs
— Study ID does not help to predict response

e Uses of ICP:

— Generalize from individual study results

* Invariant causal CPTs can be “transported” across study
settings, allowing predictions in novel settings

— Synthesize studies with overlapping variables

— Detect omitted/unobserved causes (latent variables)
via homogeneity tests of response CPTs

* Provides sound basis for counterfactual causality



ICP addresses challenge of ambiguous (model-
dependent) counterfactual predictions

Scientific Method AMI incidence before and after the smoking ban - Tuscany
Observerd and predicted (with or without seasonality)
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Updating Hill for manipulative causation:
Orienting arrows with data constraints

Temporality: Causes precede their Directed dependence principle: Information flows from
effects causes to their effects over time.
e Predictive causation principle: Changes in causes help to
predict changes in their effects
e Techniques: Granger causality tests, transfer entropy,
directed information graphs, dynamic Bayesian networks
e LINGAM principle for linear non-Gaussian models:
Prediction error distributions vary simply and predictably
with predicted values

There are many ways to orient arrows from data (Granger, DBN, DIG, homoscedasticity,
exogeneity, compositionality ...)

But directions of some arrows may not be uniquely determined by data, or may not be
clearly defined/interpretable conceptually — Data constrain possible causal graphs



Updating Hill for manipulative
causation: Coherent explanation

Biological plausibility: Exposure- o
response association has a
plausible biological mechanism

Coherence: Agrees with
knowledge of disease biology o

Coherent structural causation: Effects are derived from
their causes. Directed paths lead from causes (e.g.,
doses) to their effects (e.g., responses) in a causal graph
Coherent causal explanation: A valid causal graph
explains the observed data

Exposures affect response probabilities via pathways
(sequences of mechanisms in a causal biological graph)

Coherent causal explanation/biological plausibility: Identify paths (explanations) from
exposure to response through causal biological network, consistent with data
QRA: exposure — [PBPK] — internal dose — [PD] — response

Causal mediation confirmation:

Compositionality: If X — Z — Y is valid, then dY/dX = (dY/dZ)(dZ/dX)
Chapman-Kolmogorov: P(y | x) = Z,P(z | x)P(y | z)



Special cases in Hill considerations
(No new criteria needed)

Experiment. Reducing exposure
reduces effect

Specificity of effects: A specific
cause produces a specific effect

Biological gradient: Larger
responses at higher exposures

Exogenous changes in causes produce predictable
changes in the probability distributions of their effects that
can be calculated via CPTs.

Connectivity: One or more directed paths in a causal
graph lead from causes to their effects.
Direct effects of a cause are its children in a causal graph

Variations in direct causes help to predict and explain
variations in their (possibly joint) effects via a CPT



Final step:

Refute alternative (non-

causal) explanations

Non-causal explanation

Methods for addessing non-causal associations

Unobserved (latent) confounders
(Pearl and Mackenzie, 2018)

These can be tested for and their effects modeled and controlled for using the
Tetrad, Invariant Causal Prediction, and BACKSHIFT algorithms, among others.

Spurious regression in time series
or spatial observations with trends
(Yule, 1926)

Spurious regression arising from coincident trends can be detected and avoided
by using conditional independence tests and predictive causation (e.g., Granger
causality) instead of regression models.

Collider bias; stratification or
selection bias (Cole et al., 2010;
Pearl and Mackenzie, 2018)

A study that stratifies or matches individuals on certain variables, such as
membership in an occupation, or an analysis that conditions on certain
variables by including them on the right-hand side of a regression model, can
induce exposure-response associations if the variables conditioned, matched,
or stratified on are common descendents of the exposure and response
variables. The association does not indicate causality between exposure and
response, but that they provide alternative explanations of an observed value.
Such biases can be avoided by using dagitty to compute adjustment sets and
conditioning only on variables in an adjustment set.




Refute non-causal explanations for
exposure-response association

Other threats to internal validity
(Campbell and Stanley, 1963)

Threats to internal validity (e.g., regression to the mean, coincident historical
trends, sample selection or attrition biases, reporting biases, etc.) were
enumerated by Campbell and Stanley (1963), who also discuss ways to refute
them as plausible explanations, when possible, using observational data.

Model specification errors (Lenis
et al., 2018; Linden et al., 2017;
Pirracchio et al., 2015)

Model specification errors arise when an analysis assumes a particular
parametric modeling form that does not accurately describe the data-generating
process. Assuming a linear regression model when there are nonlinear effects
present is one example; omitting high-order interactions terms is another. Model
specification errors can be avoided by using non-parametric model ensemble
methods such as PDPs.

P-hacking, i.e., adjusting modeling
assumptions to produce an
association (e.g., a statistically
significantly positive regression
coefficient). (Fraser et al., 2018)

Automated modeling using CAT or packages such as randomForest and
bnlearn to automate modeling choices such as which predictors to select, how
to code them (i.e., aggregate their values into ranges), and which high-order
interactions to include can help to avoid p-hacking biases.




Refute non-causal explanations for
exposure-response association

Omitted errors in explanatory Using job exposure matrices, remote-sensing and satellite imagery for pollutant
variables. (Rhomberg et al., 2011) | concentration estimation, or other error-prone techniques for estimating
exposures, creates exposure estimates for individuals that can differ
substantially from their true exposures. In simple regression models, omitting
errors from the estimated values of explanatory variables tends to bias
regression coefficients toward the null (i.e., 0), but the bias can be in either
direction in multivariate models, and failing to carefully model errors in
explanatory variables can create false-positive associations. These errors and
biases can be avoided by modeling errors in explanatory variables.

Omitted interdependencies among | Regression models that ignore dependencies among right-hand side variables
explanatory variables. (Pearl and can create non-causal exposure-response associations. This can be avoided
Mackenzie, 2018; Textor et al., by using dagitty to compute adjustment sets for the causal effect of exposure on
2016) response and then conditioning on variables in an adjustment set to estimate
that effect.




Proposed criteria can be made
operational via statistical tests

Criterion

Mutual
information

Directed
dependence

Test

Reject null hypothesis that Y is
conditionally independent of X

For longitudinal data: Reject null
hypothesis that future values of Y are

conditionally independent of past values

of X, even after conditioning on past
values of Y and other variables.

For cross sectional data: Reject null

hypothesis that direction of dependence

is undetermined by data.

Methods

Reject null hypothesis if X and Y are
linked in DAG models learned from
data by causal discovery algorithms
(e.g., those in the bnlearn package).
Other tests for independence (e.g.,
chi-squared tests) can also be used.

Reject null hypothesis if X and Y are
linked in DBNs or DIGs learned from
data (e.g., via the bnstruct package).
Granger tests can also be used for
time series data.

Reject null hypothesis if constraints
determining the direction of an arrow
can be identified from data (e.qg.,
using LINGAM, BACKSHIFT, or
Simon-lwasaki causal ordering)



Internal
consistency

External
consistency

Causal
mediation
confirmation

Operational criteria

Do not reject null hypothesis that effects
estimated from different adjustment sets
are the same

Do not reject null hypothesis that
response CPTs estimated from different
studies or data sets are the same

Do not reject the null hypothesis that
variations in Y caused by variations in X
are explained by resulting variations in
mediating variables (e.g., as described
by the Chapman-Kolmogorov identities
implied by an explanation in the form of
a probabilistic causal graph model)

Reject null hypothesis if confidence
bands for effects estimated from
different adjustment sets do not
overlap.

Reject null hypothesis if study ID is a
parent of response in DAG models
learned from data.

Reject null hypothesis if variations in
mediating variables do not explain
variations in Y for different values of
X (e.g., if a chi-squared test rejects
the conditional independence and
Chapman-Kolmogorov implications of
the explanation).



Causal
coherence &
biological
plausibility

Refutation of
non-causal
explanations

Operational criteria

Reject the null hypothesis that identified
biologically plausible pathway(s)
directed from X to Y cannot explain the
observed dependence of Y on X

Reject the null hypothesis that the
observed statistical dependence of Y on
X has a non-causal explanation

Reject the null hypothesis if one or
more biologically plausible coherent
causal explanations (pathways in a
causal biological network) are
identified that can explain the
dependence of Y on X.

Reject the null hypothesis if threats to
validity are refuted (Campbell and
Stanley, 1963).



Summary: Information-based causal
perspectives

Focus specifically on manipulative causation

Quantify causal exposure-response dependence

— Multiple paths/explanations for association
* Qualitative determination of causality is not well-defined

— Partial dependence plots for effects of interest

Connect exposure to response probability via paths in causal
graphs and causal biological networks

Test implications of hypothesized manipulative causal

exposure-response explanations using data

— Mutual information, directed information flow, internal and
external consistency (ICP), coherent explanation, CMC

Refute non-causal explanations using data

Result: Assess consistency of evidence with manipulative
causal interpretation of exposure-response dependence using
information in data sets



Thanks!



