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Introduction Regulatory Science

Regulatory Science

Medical product entry

Food & Drug Administration: evaluates medical product safety,
effectiveness, and quality
Post-market safety assessments

Insurance coverage for medical products/services
Medicare Evidence Development and Coverage Advisory
Committee: evaluates medical literature, technology assessments,
etc., on benefits, harms, and appropriateness of medical items and
services to make health care coverage recommendations

Must extrapolate treatment benefits to their population

Transportation
Federal Motor Carrier Safety Administration: evaluates the safety
of large trucks, buses, and commercial vehicles

Use data on safety-based regulations collected from roadside
inspections and crash reports

Sometimes, must rely on observational data
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Introduction What is Evidence?

Scientific Evidence for Medical Decisions

Accumulation of
information to support
or refute a theory or
hypothesis

Replication important

Underlying mechanism
important

Commentary
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What is evidence?
Sharon-Lise T. Normanda,b∗† and Barbara J. McNeila,c

The assumption that comparative effectiveness research will provide timely, relevant evidence rests on changing the current
framework for assembling evidence. In this commentary, we provide the background of how coverage decisions for new medical
technologies are currently made in the United States. We focus on the statistical issues regarding how to use the ensemble of
information for inferring comparative effectiveness. It is clear a paradigm shift in how clinical information is integrated in
real-world settings to establish effectiveness is required. Copyright © 2010 John Wiley & Sons, Ltd.

Keywords: evidentiary evaluation; multiple outcomes and comparisons; hierarchical Bayesian models; Bayes factors; posterior
predictive probability

1. Introduction

The current paradigm for integrating clinical information in real-world settings to establish whether benefits outweigh
risks is out-dated. Divergence from this paradigm involves the recognition that randomized controlled trials that often
serve as the basis for new technology approval are small and short-term, and post-market studies are often voluntary and
difficult to implement. These problems have become increasingly important over the last decade because technology is
changing at a rapid pace, therapies are utilized outside their intended populations, and more representative groups of
patients are likely to have differential responses to the same therapy.

In their paper, Tunis and colleagues identify several areas of improvement to provide ‘more and better evidence of
what works’. Their thesis, and that of many others, relies on the premise that comparative effectiveness research will
provide ‘timely, relevant evidence.’ While we agree with their general premise, the framework for determining what
constitutes evidence and how it can be obtained in a timely manner motivates our commentary. We begin with a review
of how coverage decisions for new medical technologies are currently made in the United States. We then describe the
statistical methods for aggregating the ensemble of information to make inferences.

2. How are decisions made?

When a new medical technology is approved or cleared for use by the U.S. Food and Drug Administration, the
manufacturer of the technology typically follows with a request to the Center for Medicare and Medicaid Services
(CMS) for either a local coverage decision or a national coverage decision. This is a decision on whether CMS will
provide coverage for the new technology. The CMS is the U.S. federal agency that administers the Medicare, Medicaid,
and States Childrens Health Insurance Programs, and as such, is the largest health insurer in the United States. The
majority of requests for coverage by CMS are for local decisions because a denial resulting from a national request has
much more serious consequences than does one from a local request. National coverage decisions made by the CMS
have substantial impact on the use of new technologies because other insurers frequently follow suit.

In some cases, the CMS will seek guidance from the Medicare Evidence Development & Coverage Advisory Committee
(MedCAC), an independent advisory committee which was established in 1998. The MedCAC judges the strength of the
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Introduction What is Evidence?

Hierarchy of Evidence

Therefore, many designs contribute to evidence base
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Introduction What is Evidence?

Hierarchy of Evidence

Bradford Hill: 1965

1 Strength of association

2 Consistency

3 Specificity

4 Temporality

5 Biological gradient

6 Plausibility

7 Coherence

8 Experiment

9 Analogy

Hill AB. The environment and disease: association or causation? Proceedings of the
Royal Society of Medicine, 1965;58:295-300.
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Introduction What is Evidence?

Contemporary Setting

With data acquisition technologies, biggest challenge is data integration

molecular biology

toxicology

genotoxicology

imaging

functional MRI

electronic health records

mobile applications
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Introduction What is Evidence?

DuMouchel and Harris. Bayes methods for combining the
results of cancer studies in humans and other species.
JASA 1983;78(382):293-308.

 294 Journal of the American Statistical Association, June 1983

 Section 6 we explore the problem of deciding which ex-
 periments are most relevant to human cancer risks.

 2. AN ILLUSTRATIVE PROBLEM

 Table 1 displays the results of five types of studies on
 nine related environmental agents, arranged in a two-way
 table. Experimental data are available in 36 of the 45 cells

 in the table. The first row of experiments represents the
 results of epidemiological studies of human lung cancer
 incidence in relation to occupational exposure to roofing
 tar emissions (Hammond et al. 1976); occupational ex-
 posure to coke oven emissions (Lloyd 1971; Mazumdar
 et al. 1975; U.S. Environmental Protection Agency 1979);
 and cigarette smoking (Kahn 1966). The remaining rows
 represent the results of various laboratory experiments
 on the dichloromethane extracts of roofing tar emissions,
 coke oven emissions, particulate emissions from four dif-
 ferent diesel engines and one gasoline-powered engine;
 on the polyaromatic hydrocarbon benzo(a)pyrene; and on
 whole cigarette smoke condensate. The laboratory ex-

 periments include skin tumor initiation in Sencar mice
 (Nesnow et al. 1981); enhancement of viral oncogenic
 transformation in Syrian hamster embryo (SHE) cells
 (Casto et al. 1980); and mutagenesis experiments in
 L5178Y mouse lymphoma cells performed with and with-
 out metabolic activator (Mitchell et al. 1980). The labo-
 ratory experiments in each row were conducted under
 identical conditions, as part of the U.S. Environmental
 Protection Agency's diesel emission research program
 (Huisingh et al. 1980).

 The choice of experiments in Table 1 reflected the lim-
 ited availability of experimental data comparing diesel

 emissions to other related environmental emissions in the
 same bioassay. An assay was included in the table only
 if (a) it was considered to have been performed reliably
 and reproducibly; (b) sufficient data were provided to es-
 timate a dose-response relation; and (c) the experiment
 was regarded as a valuable, quantitative measure of car-

 cinogenicity or mutagenicity in mammalian systems (Har-
 ris 1981,1983).

 The entries in each nonempty cell represent the results
 of fitting a linear dose-response model to the observed
 experimental data. For each experiment, three numbers
 are given: the estimated slope of the dose-response re-
 lation; its coefficient of variation (the ratio of the standard
 error of the estimated slope to the estimate itself); and
 the natural logarithm of the estimated slope. (The role of
 these log slopes will become apparent shortly.) In our
 analysis of these data, we shall interpret the dose-re-
 sponse slope to be a measure of the potency of a given
 agent in a given species. The slopes and their standard
 errors were estimated by maximum likelihood methods,
 as described in Harris (1981,1983). Appendix A briefly
 summarizes the dose-response models and their estima-
 tion.

 Table 1 provides relatively precise data on the human
 effects of cigarette smoke and coke oven emissions. But
 the effect of roofing tar is not precisely estimated, and
 for the remaining agents we have no human data. The
 main question is how to use all of the evidence in Table 1
 to obtain more precise estimates of the human lung
 cancer risks.

 To answer this question we need to posit an underlying
 common mechanism or hypothesis that generates all the
 data in the table. Specifically, we shall examine the hy-

 Table 1. Two-Way Table of Epidemiological Studies and Laboratory Experiments on
 Nine Environmental Mixturesa

 Roofing Coke Diesel Engine Emissions Gasoline
 Tar Oven Engine Benzo(a) Cigarette

 Emissions Emissions A B C D Emissions pyrene Smoke'

 Lung Cancer 1.64 4.40 .03
 (Humans)b 1.41 .34 .15

 .50 1.48 -3.46

 Skin Tumor .54 2.10 .53 .16 .01 .03 85.28 .00
 Initiation (Sencar .04 .04 .04 .22 .82 .26 .03 1.30
 Mice)c -.63 .74 - .64 -1.86 -4.51 -3.61 4.45 -5.88

 Enhancement of 2.07 .86 .65 .07 .13 .04 .20 540.00 .58
 Viral Transform. .18 .10 .15 .33 .18 .59 .12 .04 .08
 (SHE cells)d .73 -.15 -.44 - 2.70 -2.06 -3.24 -1.59 6.29 -.54

 Mutagenesis -MA .31 .73 1.66 .27 2.55 .16 .35 .59
 (Mouse 5178Y .39 .21 .31 .43 .16 .24 .11 .23
 Lymphoma Cells)e -1.17 -.32 .51 -1.31 .93 -1.86 -1.06 -.53

 Mutagenesis +MA 9.56 9.96 1.87 .76 1.01 .05 .99 .45
 (Mouse 5178Y .16 .07 .26 .14 .20 .43 .10 .13
 Lymphoma Cells)e 2.26 2.30 .63 -.27 .01 -3.02 -.01 -.79

 a Each nonempty cell contains the observed dose-response slope, its coefficient of variation, and the natural logarithm of the dose-response slope.
 b Units of measurement (for all agents except cigarette smoke) are the increment in the relative risk per 104 pg/M3 of organic extractables per year.
 c Units of measurement are papillomas per mouse per mg of organic extractables at 27 weeks.
 d Units of measurement are transformations per 2 x 106 surviving cells per pg/ml of organic extractables; "SHE" = Syrian hamster embryo.
 e Units of measurement are average mutant colonies per 106 survivors per pg/ml of organic extractables; " - MA" = without metabolic activator; " + MA" = with metabolic activator.
 f Units of measurement for cigarette smoke refer to whole smoke condensate rather than organic extractables.

This content downloaded from 206.253.207.235 on Mon, 08 Apr 2019 20:05:05 UTC
All use subject to https://about.jstor.org/terms

Combining heterogenous data sources not new

sharon@hcp.med.harvard.edu (HMS) Society of Toxicology Webinar 2019 April 10, 2019 8 / 35



Introduction Example 1

Schizophrenia

High clinical need & difficulty
navigating health care system

Low quality & black/white
disparities

Medicaid is largest payer

Antipsychotics are costliest
therapeutic category for state
programs

Horvitz-Lennon et al., Health Services Research, 2014
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Introduction Example 1

Schizophrenia

High clinical need & difficulty
navigating health care system

Low quality & black/white
disparities

Medicaid is largest payer

Antipsychotics are costliest
therapeutic category for state
programs

Medicaid policies/benefits vary
across states but within-state:

Covered by a single payment
system with identical
policies/benefit structure
Variation in access to federal,
state, and local (county)
resources
Extant evidence suggests
geography plays a role

Horvitz-Lennon et al., Health Services Research, 2014
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Introduction Example 1

Schizophrenia

1 Does quality of mental health care differ among
black, white, and Latino Medicaid beneficiaries?

2 Do quality and disparities change over time?

3 Do quality and disparities vary across counties?
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Introduction Example 2

Drug Reformulations

Manufacturer reformulate existing products to extend product life
cycle (1984 Hatch-Waxman Act)

Shift demand for original formulation (soon lose patent protection) to
the reformulation

Reformulations involve less frequent dosing, gradual release of active
ingredient, or easier to administer

Antidepressant reformulations common (original vs reformulation):

Celexa vs Lexapro (single isomer); Paxil vs Paxil CR (controlled
release); Remeron vs Remeron Soltab (disolvable tablet)

Clinical trial evidence is sparse; mixed at best

Huskamp et al., Health Affairs 2009
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Introduction Example 2

Drug Reformulations

Do anti-depressant reformulations decrease medication
discontinuation rates compared to original
formulations?
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Introduction Example 3

Specific Drug Eluting Stents

Rapid proliferation of drug eluting stents (DES)

U.S. has 2nd highest number of overall stent insertions per capita

Multiple competing versions supported by a few manufacturers

Differences include polymer coating, specific drug, platform type, and
delivery system

Study 21,000+ adults, 10 model-specific DES, 3 manufacturers

Rose & Normand; Biometrics 2018
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Introduction Example 3

Specific Drug Eluting Stents

Do particular model-specific DES cause fewer adverse
cardiac events compared to other model-specific DES?
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Common Statistical Issues

Common Themes

Observational data

Clustered data

Adults living within counties
Patients nested within hospitals

Multiple competing treatments: 10 different drug eluting stents

Multiple outcomes: quality indicators
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Common Statistical Issues No randomization

Lack of Randomization

Causal inference

Special case of predictive inference among subjects who could receive
any of the different treatment options
Renewed interest

Why increased interest?

Increasing availability of data
Increasing availability of different data types (e.g, text, images, etc.)
Ignorable treatment assignment more plausible by conditioning on more
data

Notation

T = 1 new and T = 0 standard treatment (assume binary)
Y observed outcome
Y1, Y0 potential outcomes under T = 1 and T = 0

Assumption that potential outcome exists is fundamental
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Common Statistical Issues No randomization

Causal Assumptions

1 Sample is representative of target population

2 Outcomes for one subjects is independent of treatment assignment of
other subjects and treatments are well-defined & the same for all
subjects (SUTVA)

3 Within the subpopulations defined by the confounders, treatments are
randomly assigned

Untestable assumption (sensitivity analysis, multiple comparison
groups, control outcomes)

4 There are subjects from all treatment groups at every combination of
observed confounders

Structural violations
Practical violations due to finite sample size
Statistically testable

5 Constant (vs Non-constant) treatment effect
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Common Statistical Issues No randomization

Assumptions: Randomized vs Not

Clinical Observational Setting
Feature Trial Study Comment
Treatment, T* Well-defined and does not vary across subjects

P(T) Known Unknown Estimate
Positivity Yes Not Real & finite sample
0 < P(T) < 1 by design necessarily sample violations

Comparability Almost Sometimes Assess balance on
always observables

Effect Intention to Adjusted Sensitivity to
Estimate Treat (ITT) as-treated measured and

hidden confounders**

Postrandomization Possible Possible
Bias Loss to follow-up, time-varying risks, competing risks

*Assume treatment received by subject A does not affect the outcome of subject B; **Mitigation strategies: falsification
outcome, multiple control groups; Kunz, Rose, Spiegelman, Normand (Chapter 1); Hernán, Robins (Chapter 3); Methods in
Comparative Effectiveness Research, 2017

sharon@hcp.med.harvard.edu (HMS) Society of Toxicology Webinar 2019 April 10, 2019 19 / 35



Common Statistical Issues No randomization

Approaches (T Treatment, Y Outcomes, X Covariates)

Joint Distribution

P(Y, T ,X) = P(Y | T ,X)× P(T | X)× P(X)

= QY × ΠT ×QX

1 Treatment effect depends only on QY and QX

EX (E(Y | T = 1,X)) − EX (E(Y | T = 0,X))

2 ΠT is the propensity score (nuisance)

ΠT = P(T = 1 | X)

X could be very high-dimensional
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Common Statistical Issues No randomization

Approaches: 3 Types (considered today)

1 Model only the treatment assignment mechanism via regression

Propensity score, ΠT = P(T | X)
Weight or match using Π̂T

2 Model only the outcome via regression

Multiple regression modeling
Parametric g-computation

Step 1: Estimate regression model for outcome and treatment
association
Step 2: Plug predictions from Step 1 into parameter mapping for
causal parameter

3 Model both the treatment assignment mechanism and outcome

Augmented Inverse Probability of Treatment Weights
Target Maximum Likelihood
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Common Statistical Issues No randomization

Reformulation Example

Rx Dates  Number of Subjects 

4/1/02-3/31/04  Paxil CR = 24224 

7/1/99-6/30/01  Paxil    = 36811 

Non-Contemporaneous (Matched) 

Rx Dates          Number of Subjects 

4/1/02-3/31/04    Paxil CR = 23713 

7/1/99-6/30/01    Paxil    = 23713 

Rx Dates  

4/1/02-3/31/04 

Number of Subjects 

Paxil   = 19413 

Contemporaneous (Matched) 

Rx Dates          Number of Subjects 

4/1/02-3/31/04     Paxil CR = 14307 

4/1/02-3/31/04     Paxil    = 14307 

July 1, 1999 June 30, 2001 April 1, 2002 March 31, 2004 

Paxil Paxil Paxil Paxil 

Paxil CR Paxil CR 

C
o

n
te

m
p

o
ran

e
o

u
s 
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Common Statistical Issues No randomization

Reformulation Example

Rx Dates  Number of Subjects 

4/1/02-3/31/04  Paxil CR = 24224 

7/1/99-6/30/01  Paxil    = 36811 

Non-Contemporaneous (Matched) 

Rx Dates          Number of Subjects 

4/1/02-3/31/04    Paxil CR = 23713 

7/1/99-6/30/01    Paxil    = 23713 

Rx Dates  

4/1/02-3/31/04 

Number of Subjects 

Paxil   = 19413 

Contemporaneous (Matched) 

Rx Dates          Number of Subjects 

4/1/02-3/31/04     Paxil CR = 14307 

4/1/02-3/31/04     Paxil    = 14307 

July 1, 1999 June 30, 2001 April 1, 2002 March 31, 2004 

Paxil Paxil Paxil Paxil 

Paxil CR Paxil CR 

C
o

n
te

m
p

o
ran

e
o

u
s 
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Common Statistical Issues No randomization

Reformulation Example

Non-Contemporaneous Matched Samples‡

Reformulation versus Original Formulation
Days to RR† #

Comparison Discontinue (95% CI) Pairs
Lexapro 91 0.83 (0.80, 0.85) 18,045
Celexa 64 1.00

Paxil CR 64 0.87 (0.85,0.89) 23,713
Paxil 61 1.00

Remeron Soltab 65 1.04 (1.00,1.08) 10,820
Remeron 66 1.00

†Kaplan-Meier Analysis of Risk of Antidepressant Discontinuation
‡No change with contemporaneous matched sample except for Remeron
Soltab; RR = 0.94(0.90, 0.98)
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Common Statistical Issues No randomization

Target Maximum Likelihood

Key idea: no need to maximize entire likelihood (Y, T ,X) because
causal parameter only depends on QY and QX
Step 1: Estimate outcome model and treatment model

Step 2: Plug predictions from Step 1 into parameter mapping for
causal parameter

Step 1 : E∗(Y | T = t,X) = E0(Y | T = t,X) + εtH
∗(T ,X)

H∗(T ,X) =
T

ΠT
−

1 − T

1 − ΠT

Step 2 :
1

N

N∑
i=1

(E∗(Y | T = 1,Xi) − E
∗(Y | T = 0,Xi))

E∗: targeted estimate of regression of Y on (T ,X) obtained by moving
the initial estimate E0 by fluctuations defined by εtH

∗(T ,X)
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Common Statistical Issues No randomization

Summary

Approach Strengths Weaknesses
IPTW Simple Large variance estimates

1
ΠT

Weight trimming bias

Regression Parametric Extrapolation
Simple if violate positivity

Functional form
G-Comp Parametric Extrapolation

Simple if violate positivity
Functional form

A-IPTW Double robust Finite sample inefficient
Asymptotic efficiency

TMLE Double robust
Asymptotic efficiency
Finite sample efficiency
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Common Statistical Issues Clustered data

Clustering

Clustered data: when units are nested completely within other units

Longitudinal data: observations are clustered within subjects
Levels of clustering may be > 2

Problem introduced: observations within a common unit are
statistically dependent

In practice: the between-unit variance may be a nuisance parameter
or it may be of interest

Marginal models (GEE) treat the between-unit variation as a nuisance
parameter

Regression parameters represent association of patient-level covariates
with changes in the population mean outcome

Hierarchical models (mixed models, random effect models) introduce
random effects

Regression parameters represent association of patient-level covariates
with changes in the patient’s outcome
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Common Statistical Issues Clustered data

Clustering: Other Considerations

Interest in covariate effects at different levels of the hierarchy

Cross-level interactions

Yij | βi = xijβi + zijα+ εij; εij ∼ N(0,σ2
i)

βi | τ
2 = wiγ+ ui;ui ∼ N(0, τ2)

wi is a county-level covariate

xij is subject j living in country i covariate

Can always derive marginal model from conditional model
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Common Statistical Issues Multiple outcomes

Multiple Outcomes

Increasingly collected in clinical trials to measure effectiveness or
efficacy

Label extensions

Often measures are non-commensurate
Measured on different scales

Common approaches:

Consider each outcomes separately using a univariate framework
Create a composite measure

A multivariate approach would:

Use information contained in the correlation between outcomes
Permit better control over Type I error rates
Answer intrinsically multivariate questions
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Common Statistical Issues Multiple outcomes

Schizophrenia Example: Quality Indicators

Established quality indicators endorsed by professional societies

Cover pharmacological, psychosocial, and appropriateness services

Majority operationalizable using billing data:

adequate clozapine dose and duration
avoidance of antipsychotic polypharmacy
use of psychosocial services
follow-up within 7-days of hospital discharge
few emergency department visits

At least 15 established measures of quality of care

Measures are non-commensurate but thought to reflect a single concept
(quality of care)

Why clustered within county?

Counties are the administrative unit
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Common Statistical Issues Multiple outcomes

Likelihood-based Approaches

Key Idea: avoid direct specification of the multivariate likelihood.

Factorization (a few variables)

Cox and Wermuth, Biometrika, 1992; Fitzmaurice and Laird, JASA,
1995; Catalano and Ryan, JASA, 1992.

Introduction of a latent variable to model correlation among the
multiple outcomes

Sammel et al., JRSSB, 1997; Arminger and Kusters, Latent Trait and
Latent Class Models, 1988; Dunson, JRSSB, 2000.

Quasi-likelihood: use quadratic exponential model to develop joint
estimating equations

Prentice and Zhao, Biometrics, 1991.
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Common Statistical Issues Multiple outcomes

Remarks

If strong correlation between outcomes, univariate approach results in
less efficient estimates

Higher efficiency gains realized when the two outcomes share different
sets of covariates

When missing data, can directly maximize the likelihood for the latent
variable approach owing to conditional independence assumption

Many situations with more than two outcomes

Latent variable approach is easily extended to several continuous and
binary outcomes; not true for factorization approach.
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Concluding remarks

Concluding Remarks

Risk adjustment for causal inference

Must assess validity of assumptions
Must assess robustness of conclusions to reasonable departures from
assumptions
High-dimensional data: parametric assumptions difficult to verify and
more uncertainty

Clustering

Understand question being posed
Is variability a nuisance parameter or is it of policy-interest?

Multiple outcomes

Are outcomes manifest variables to inform about a latent variable
Do covariates affect outcomes differently
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Concluding remarks

Schizophrenia Example: County Disparities

Worse Care vs Whites Better Cares vs  Whites
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Concluding remarks

Key Principles

Avoid strong parametric assumptions

In setting with many confounders, very likely to get the model really
wrong

Adhere to causal inference assumptions
Validate assumptions
Assess robustness to reasonable departures from assumptions

Adopt a design-based approach

Separate treatment from outcome during the modeling process

Reflect all uncertainty in estimates

Thank you
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