

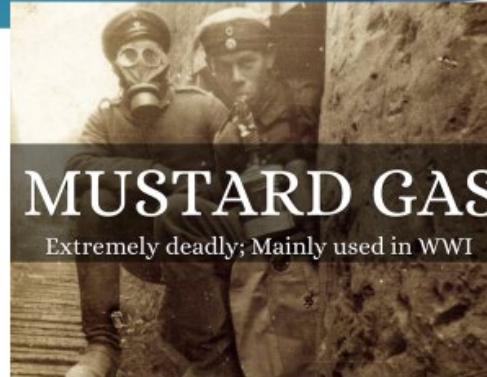
Chemical Carcinogenicity Revisited 2: Current Knowledge of Carcinogenesis Shows that Categorization as a Carcinogen or Non-Carcinogen is Not Scientifically Credible

RITA SCHOENY PH.D.

U.S. EPA – RETIRED

RASS 11/13/19

Classification of Carcinogens: What Could Go Wrong ?


RITA SCHOENY PH.D.

U.S. EPA – RETIRED

EUROTOX WORKSHOP 2019

There certainly are anomalies

How did we explain this?

"UN health body says bacon, sausages and ham among most carcinogenic substances along with cigarettes, alcohol, asbestos and arsenic." Guardian

All "Carcinogens" Are Not Equal

IARC 2A

- ▶ Several PAH
- ▶ Nitrosoamines (NDMA, MMS, DEN)
- ▶ Adriamycin
- ▶ Glyphosate
- ▶ Red meat
- ▶ Hairdresser or Barber

IARC 2B

- ▶ Kepone
- ▶ Ethylymethanesulphonate
- ▶ Riddelline
- ▶ Chloroform
- ▶ Gasoline
- ▶ Coffee

Incomplete information; may be misleading

Classification for Carcinogenicity

Evidence Maps to Cancer Classifications

Human	Animal	Indirect, Other	IARC	US EPA	NTP
Sufficient	--	--	Carcinogenic to humans (Group 1)	Carcinogenic to humans	Known to Be Human Carcinogen
Limited	Sufficient	Strong human mechanistic data			
		--	Probably carcinogenic to humans (Group 2A)	Likely to be carcinogenic to humans	Reasonably Anticipated to Be Human Carcinogen
Inadequate	Sufficient	Strong			
	Limited	Strong			
	Sufficient	--			
Limited	Limited	--	Possibly carcinogenic to humans (Group 2B)	Inadequate Information to Assess	
Inadequate	Inadequate	Strong & same class as other carcinogens			
		Strong/convincing			
Inadequate	Limited	--	Not classifiable	Suggestive	Not classified

- ▶ Many schemes – IARC, GHS, EU but use same basic concept
- ▶ Grade the strength or weight of **evidence** not carcinogenic potential
- ▶ Potency difference of 10^8 in chemicals in same category
- ▶ **Chemicals are carcinogens or non-carcinogens**

A Rough Guide to IARC CARCINOGEN CLASSIFICATIONS

The International Agency for Research on Cancer (IARC) classifies substances to show whether they are suspected to cause cancer or not. It places substances into one of five categories depending on the strength of evidence for their carcinogenicity.

THE IARC'S INDEX ONLY TELLS US HOW STRONG THE EVIDENCE IS THAT SOMETHING CAUSES CANCER. SUBSTANCES IN THE SAME CATEGORY CAN DIFFER VASTLY IN HOW MUCH THEY INCREASE CANCER RISK.

© COMPOUND INTEREST 2015 - WWW.COMPOUNDCHM.COM | @COMPOUNDCHM

5

Agents Classified by the IARC Monographs, Volumes 1–119

Group 1

Carcinogenic to humans

120 agents

Group 2A

Probably carcinogenic to humans

81

Group 2B

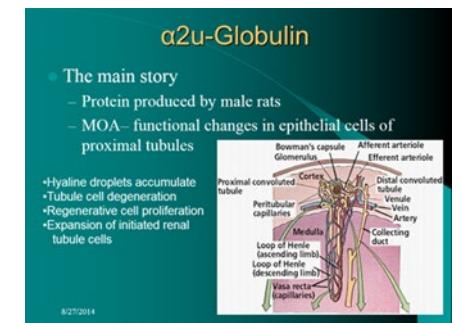
Possibly carcinogenic

299

Group 4

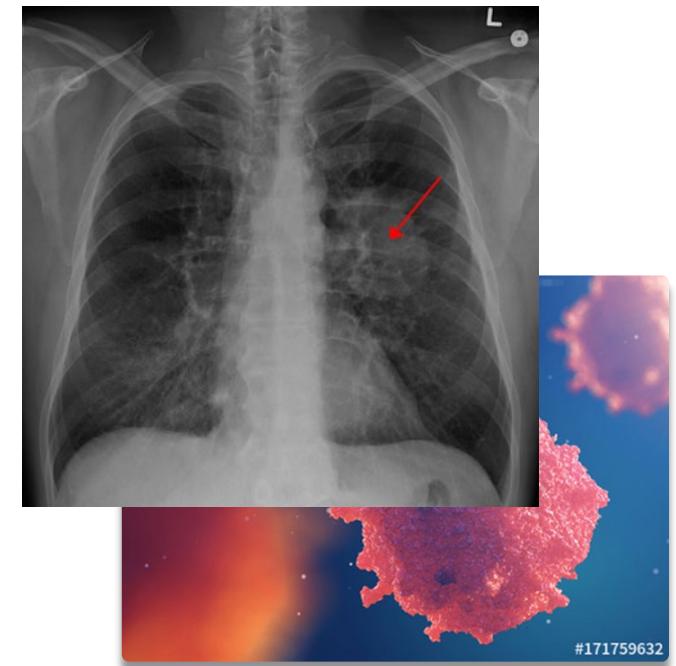
Probably not carcinogenic to humans

1

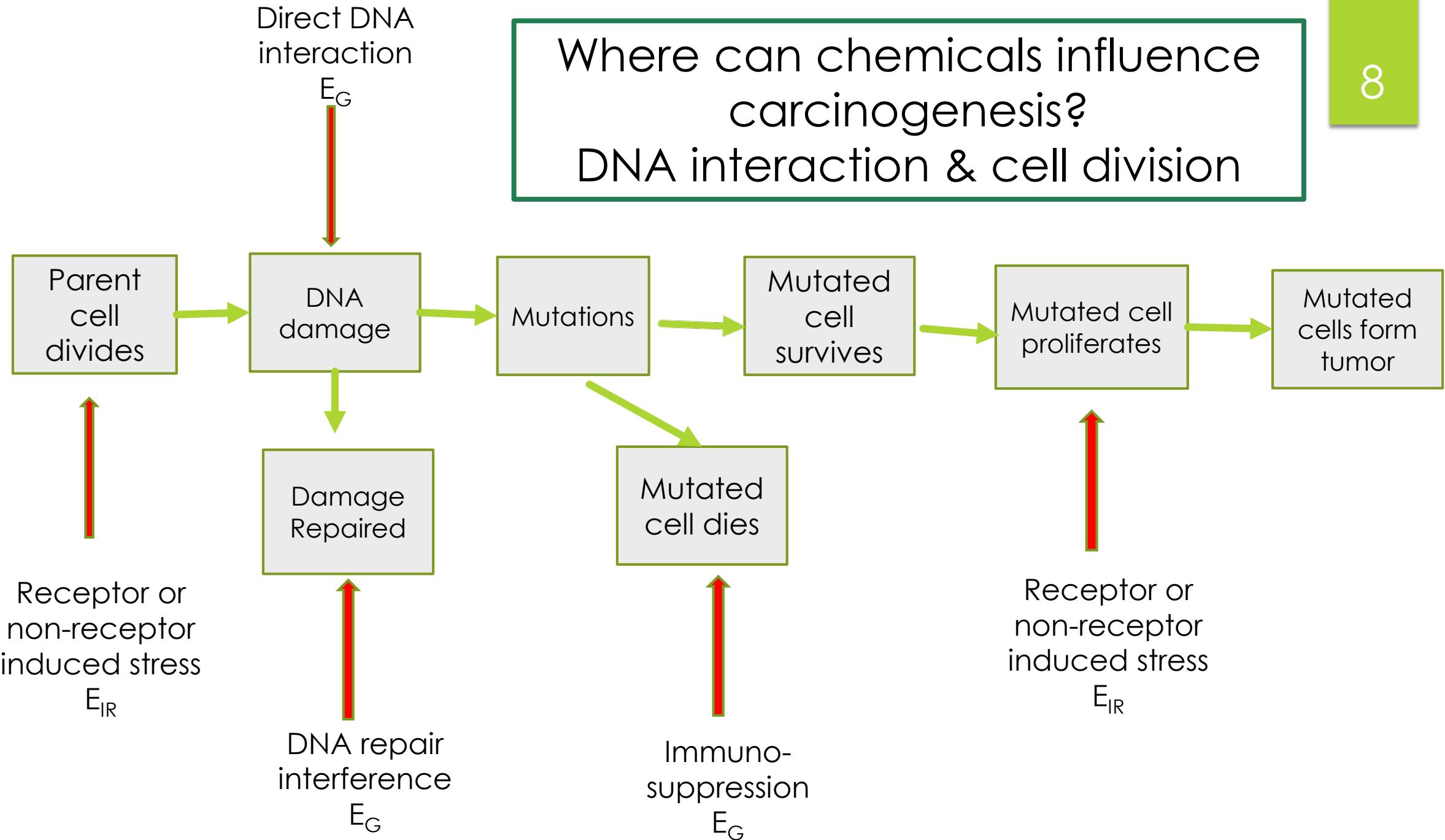

<http://www.compoundchem.com/2015/10/26/carcinogens/>

Evidence for Carcinogens

- ▶ Epidemiology – mainly evidence for carcinogenicity, not lack of carcinogenicity – difficult to prove negative
- ▶ Rodent bioassays
 - ▶ Treatment related increase in neoplasms – CARCINOGEN*
 - ▶ No treatment related increase in neoplasms – NON-CARCINOGEN


*Unless human non-relevance can be proved

What about decreases in neoplasms?


What is known about the cancer process?

- ▶ Cancer is due to mistakes occurring in the DNA.
- ▶ More than one mistake in the DNA is necessary.
- ▶ All of the mistakes need to accumulate in a single cell (clonal origin of cancer).
- ▶ The cell population at risk are the tissue pluripotent (stem) cells.
- ▶ Every time DNA replicates, permanent mistakes could occur.
- ▶ Carcinogenesis is a stochastic process.

Where can chemicals influence carcinogenesis?

DNA interaction & cell division

Risk Factors for increasing numbers of DNA errors to increase probability of carcinogenic outcome

- ▶ Each stem cell division has a probability of mutation
- ▶ Probability of mutations which lead to cancer increased by:
 - ▶ R – Number of cell replications
 - ▶ H – Hereditary related errors
 - ▶ E – Environmental factors
 - ▶ E_G – Environmental stressors directly damaging the genome
 - ▶ E_{IR} - Environmental stressors inducing increased replication
- ▶ Scheme modified from Tomasetti and Vogelstein, 2015.

Implications for 2 Year Bioassay

- ▶ Designed to maximize probability of neoplasms occurring
 - ▶ Maximum Tolerated Dose
 - ▶ Lifetime dosing
- ▶ Maximizes number of stem cell divisions
- ▶ Interplay of dose-limiting toxicity and toxicity leading to proliferation
- ▶ Overlay of probabilistic processes

Proc. Natl. Acad. Sci. USA
Vol. 87, pp. 7772–7776, October 1990
Medical Sciences

Chemical carcinogenesis: Too many rodent carcinogens*

(tumor promotion/mutagenesis/mitogenesis/animal cancer tests)

BRUCE N. AMES^{†‡} AND LOIS SWIRSKY GOLD^{†§}

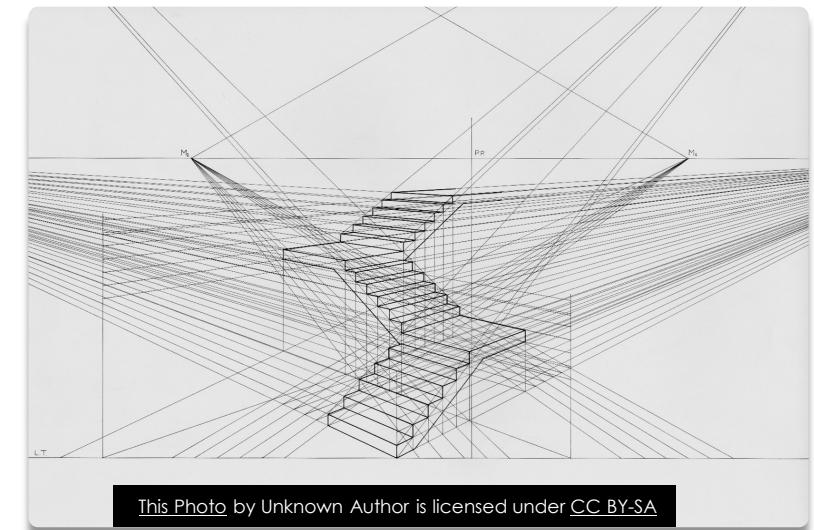
[†]Division of Biochemistry and Molecular Biology, Barker Hall, University of California, Berkeley, CA 94720; and [§]Cell and Molecular Biology Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720

ABSTRACT The administration of chemicals at the maximum tolerated dose (MTD) in standard animal cancer tests is postulated to increase cell division (mitogenesis), which in turn increases rates of mutagenesis and thus carcinogenesis. The animal data are consistent with this mechanism, because a high proportion—about half—of all chemicals tested (whether natural or synthetic) are indeed rodent carcinogens. We conclude that at the low doses of most human exposures, where cell killing does not occur, the hazards to humans of rodent carcinogens may be much lower than is commonly assumed.

Long been concern
about Rodent Bioassays

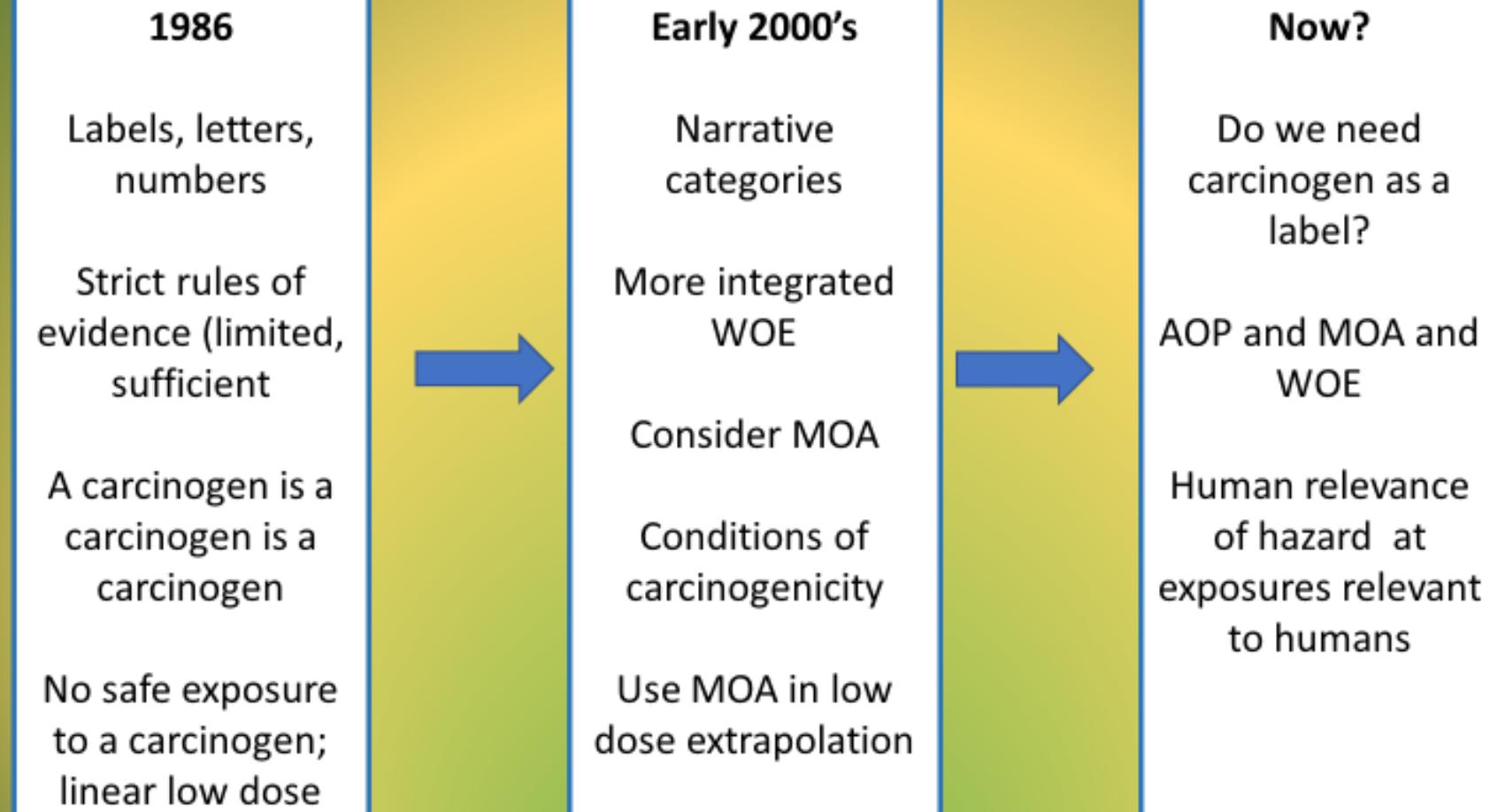
Some Predictions and Outcomes for 2 Year Bioassay.

- ▶ Likely to be high proportion of “positives”
 - ▶ approx. 50%
- ▶ Likely to be variation in results
 - ▶ Only 57% correlation of studies with same chemical – Gottman *et al* 2005
- ▶ Likely to be correlation between toxicity and carcinogenicity
 - ▶ 90-day NOAEL and the tumour NOAEL similar - Braakhuis *et al* 2018
- ▶ Many ways to induce cell proliferation
 - ▶ Difficult to reproduce results with alternative assays – Doktorova *et al*, 2014


2 Year Bioassay Results; Consider Cancer Theory

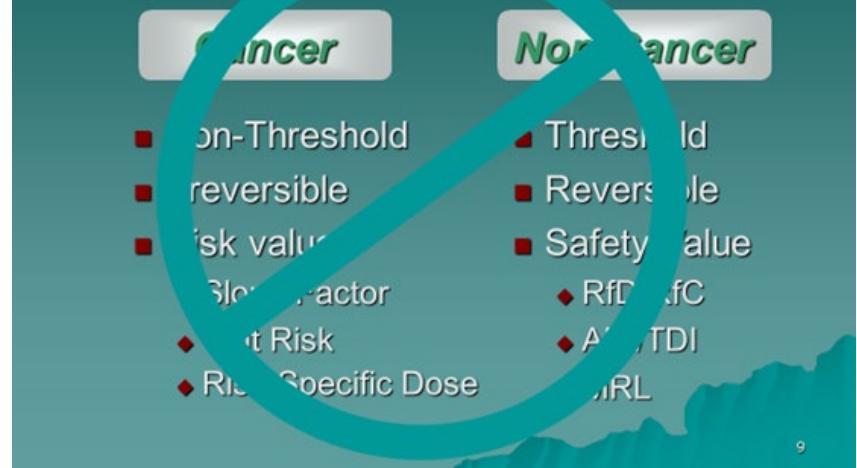
- ▶ More nuanced than simply “carcinogen or non-carcinogen”.
 - ▶ *Tumors*: genotoxicity or cellular proliferation (receptor or non-specific) activity at doses equal to or lower than dose limiting toxicity
 - ▶ *No tumors*: no genotoxicity or cellular proliferation (receptor or non-specific) activity or only at doses higher than dose limiting toxicity

Shift in Perspective


Move from identifying “carcinogens” to assessing carcinogenic potential

- ▶ Function of dose level and duration of dosing required to cause neoplasia via responses such as genotoxicity, cytotoxicity and cell proliferation.
- ▶ The lower the dose level and the shorter the duration necessary of the higher the carcinogenic potential
- ▶ Exposure at levels and durations that do not increase those responses will not cause an increase in cancer.

This Photo by Unknown Author is licensed under CC BY-SA


Progress in Cancer Risk Assessment

Do We Need a Separate Category for Carcinogenicity?

- ▶ Identify and characterize genotoxicity
 - ▶ Can be included within Mutagenicity category for classification, risk assessment and risk management processes
- ▶ Identify and characterize toxicity which can lead directly or indirectly to increased cell division
 - ▶ Can be included within Toxicity category for classification, risk assessment and risk management processes

Breaking Down the Dichotomy

EPA Does Not Have a Carcinogen List

October 2, 2014

Chemicals Evaluated for Carcinogenic Potential
Office of Pesticide Programs
U.S. Environmental Protection Agency

BACKGROUND

Labeling may pose its own hazard

What is this list?

The following list provides an overview of pesticide chemicals evaluated for carcinogenic potential by EPA's Pesticide Program through October 2012. The evaluation of many of these chemicals is an ongoing process. Therefore, the information in this list may be subject to change as new and/or additional data are submitted to EPA. This list will be updated annually.

How should the information provided in this list be used?

Although this list is available to the public, note that the list represents only the potential carcinogenicity hazard for the chemical with no consideration of exposure information. This list is not intended to be used independent of the full risk assessment for the chemical. When EPA completes a risk assessment on a pesticide, a variety of toxicity information, including potential for noncancer effects (e.g., neurotoxicity, developmental and reproductive toxicity, immunotoxicity, etc) and carcinogenicity, are considered in determining whether to register a pesticide and what requirements for use of the pesticide need to be in place to protect human health. The simple fact of being listed here does not imply that the pesticide poses a significant cancer hazard to the public from use

Conclusions

- ▶ Cancer theory points us in certain directions
 - ▶ Theory describes carcinogenesis arising from multiple mutations in dividing stem cells
 - ▶ Chemicals can cause increase in neoplasia by direct action with DNA or by increasing cell divisions
 - ▶ Stochastic process – no bright line between carcinogen and non-carcinogen
- ▶ Rodent bioassay – theory would predict high number of positives, low reproducibility, relationship between toxicity and neoplasia
This Photo by Unknown Author is licensed under
CC BY-SA
- ▶ Assess carcinogenic potential; not carcinogen or non-carcinogen
- ▶ Neoplasia an adverse outcome from Mutagenicity or Toxicity – Separate category not necessary
- ▶ Cancer classification has served a purpose, but now it is time to move on.

Chemical Carcinogenicity Revisited 2: Current Knowledge of Carcinogenesis Shows that Categorization as a Carcinogen or Non-Carcinogen is Not Scientifically Credible -
<https://doi.org/10.1016/j.yrtph.2019.01.024>

Alan Boobis, Imperial College; Vicki Dellarco, retired from EPA; John Doe, Liverpool John Moores University; Penny Fenner-Crisp, retired from EPA; Angelo Moretto, University of Milan; Tim Pastoor, Pastoor Scientific Communications; Rita Schoeny, retired from EPA; Jennifer Seed, retired from EPA; Doug Wolf, Syngenta.

