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n U.S. EPA Benchmark Dose
vEPA Technical Guidance

EPA’s Benchmark Dose Technical Guidance document:
http://www.epa.gov/raf/publications/benchmarkdose.htm

Other guidance documents relevant to BMD modeling available at:
http://epa.govliris/backgrd.html

BMDS User Guide, technical memos, glossary of terms and more at
https://www.epa.gov/bmds
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A Brief History of the BMD
Method

EPA workshop on epigenetic carcinogenesis

“Benchmark dose” coined by Kenneth Crump in “A new method for
determining allowable daily intakes”

Several EPA BMD-related publications and workshops
EPA Risk Assessment Forum discusses use of BMD in risk assessment

First IRIS BMD-based RfD (Methylmercury)

EPA benchmark dose draft technical guidance released
EPA benchmark dose software (BMDS) released
Multiple versions of BMDS released

EPA benchmark dose final technical guidance released

Incorporation of Bayesian model averaging into BMDS



e Benchmark Dose - Key
SEPA Terminology

* Benchmark Response (BMR) - a change in response for an effect
relative to background response rate of this effect

* Basis for deriving BMDs
*  User defined

*  Examples include:

* | standard deviation increase in body

weight (continuous response)
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* 10% increase in hepatocellular

hyperplasia (dichotomous response)




e Benchmark Dose - Key
SEPA Terminology

 Benchmark dose or concentration (BMD or BMC) - the maximum
likelihood estimate of the dose associated with a specified benchmark
response level

* BMD - oral exposure

* BMC — inhalation exposure

* However, the term benchmark
dose modeling is frequently used to
describe the modeling process for
both oral and inhalation exposures.
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e Benchmark Dose - Key
SEPA Terminology

Benchmark dose or concentration lower-confidence limit (BMDL or

BMCL) - the lower limit of a one-sided confidence interval on the
BMD (typically 95%)

* BMDL — oral exposure

* BMCL - inhalation exposure

Accounts for elements of
experimental uncertainty, including:
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¢ Sample size
¢ High background response

* Response variability

Preferred POD




wEPA Advantages of BMD Approach

BMD

Dose selection

Sample size

Cross-study comparison

Variability and uncertainty in
experimental results

Dose-response information

NOAEL not identified in study

Approach
BMD and BMDL not constrained to be a dose used in study

Appropriately considers sample size: as sample size decreases,
uncertainty in true response rate increases (i.e., \' N={
BMDL)

Observed response levels at a selected BMR are comparable
across studies (recommended to use BMD as point of
comparison)

Characteristics that influence variability or uncertainty in
results (dose selection, dose spacing, sample size) are taken
into consideration

Full shape of the dose-response curve is considered

A BMD and BMDL can be calculated even when a NOAEL is
missing from the study
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Challenges in the Use of the
BMD Method

Requires knowledge on how to use software and interpret results

In some cases, more data are required to model benchmark dose than
to derive a LOAEL/NOAEL

* Continuous data require a measure of variability (SD or SE) for each dose group’s
mean response

* Individual animal-level data are required for some models

* Results highly dependent on the quality of the data

Sometimes the data cannot be adequately fit by the available models
in BMDS

Currently “best” model selection can add complexity and subjectivity
to dose-response analyses



n U.S. EPA’s Benchmark Dose
EPA Software

*  EPA’s Benchmark Dose Software (BMDS, current version 3.1.2) is a
freely-available, open-source dose-response modeling product
primarily for analysis of toxicological data

- BMDS 3.1.2:

* Dichotomous data — data measured as binary responses (non-cancer and cancer)
* Suite of traditional Maximum Likelihood (MLE) and Bayesian models
* Bayesian model averaging

* Multi-tumor analysis (MS-Combo model)

* Continuous data — data measured on some continuous scale
* Suite of traditional MLE models

* Nested dichotomous data — binary, clustered responses

- BMDS 3.2:

* Will implement Bayesian models and model averaging for continuous data

- BMDS 2.7 (Archive):

* Repeated response data — continuous data measured at multiple time points 13



wEPA Types of Data

Description Examples Model Inputs
Dichotomous * Response is measured as on/off or * Tissue * Dose
true/false histopathology * Number of Subjects
* BMDS can only model positive dose- (non-cancer) * Incidence OR Percent Affected
response trends, where incidence * Tumor incidence

increases with dose

Continuous * Response is measured on a * Body weight * Dose
continuous spectrum * Organ weight * Number of Subjects
* Response is a numerical value witha  * Enzyme Activity * Mean response (per dose group)
measure of variability (i.e., standard OR individual animal responses
error or standard deviation) * A measure of variability in
* Response can either increase or response (standard deviation or
decrease with dose standard error; standard deviation

automatically calculated when
entering individual responses




1. Choose BMR(s) and dose metrics to

evaluate; select suite of models to run;
set parameter options, RUN models

2. Do any models
adequately fit the
data?

Have all
model/parameter values
been considered?

3. Are BMDLs

reasonably close
(3-fold)

4a. Select model 4b. Select model

with lowest BMDL with lowest AIC averaging if multiple
models have equal AICs

5. Document BMD analysis, including uncertainties, as outlined in reporting

requirements

Data not amenable
to BMD modeling

Consider model




wEPA Select a Benchmark Response

BMR should be near the low end of the observable range of increased
risks in a bioassay

BMRs that are too low can impart high model dependence

Model dependence can affect BMDL estimation such that BMDLs are
based on model behavior and not the observed data
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<EPA

Dichotomous BMR Types

e, P(Dose)

Probability of Respons

o
I
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For dichotomous data, BMRs are expressed as:

Added risk - AR(d) = P(d) — P(0)

Extra risk = ER(d) = [P(d) — P(0)]J/[| — P(0)]

Extra risk is recommended by the IRIS Program, and is used in IRIS
risk assessments.

|

P(d)

P(0)

10% Added Risk
0.10 =P(d) — P(0) ; if P(0)=.50
P(d) = 0.10 + P(0) = 0.10 + 0. 50 = 0.60

10%o Extra Risk
0.10 =[P(d) —P(0)]/[1-P(0)]; if P(0) = .50
P(d) =0.10x [1 - P(0)] + P(0) = (0.10 x 0.50) + 0.50 = 0.55

The dose will be lower for a 10% Extra risk

than for a 10% Added risk if P(0) > 0



%EPA Dichotomous BMR Selection

* An extra risk of 10% is recommended as a standard (not default)
reporting level for dichotomous data.

Customarily used because it is at or near the limit of sensitivity in most cancer
bioassays and in non-cancer bioassays of comparable size

* In some situations, use of different BMRs is supported

Biological considerations sometimes support different BMRs (5% for frank effects,
>10% for precursor effects)

When a study has greater than usual sensitivity, a lower BMR can be used (5% for
developmental studies)

Results for a 10% BMR should always be shown for comparison when using different
BMRs.



wEPA Continuous BMR Types

BMR Type BMR Calculation

Relative Deviation: Uo £ (BMRF X uy)

Where:
Mo = Modeled mean response at control dose
SD, = Modeled standard deviation at control dose
BMRF = BMR factor (user input used to define BMR)
Pr(X < X,|0) or Pr(X < X,|0) = Background probability that defines adverse response



£ Using Relative Deviation as the
SEPA BMR Type

* Preferred approach is to select a BMR that corresponds to a level of
change that represents a minimal biologically significant response (i.e.,
10% decrease in body weight, based on the model-estimated control
mean)

*  When using RD as the basis for the BMR, the user must check that the
model-estimated control mean approximates the observed control
means; if not, the BMD could be misspecified

* Consequence of using BMRs based on relative deviation is that the
extra risk corresponding to the change can be quite high (50% by
default)

20



n Using SD as the BMD for
EPA Continuous Data

*  Often, information on what response is a minimal biologically
significant response is lacking

* In the absence of a biological consideration,a BMR of a change in the
mean equal to one control standard deviation (1.0 SD) from the
control mean is recommended.

* In some situations, use of different BMRs is supported

*  For more severe effects,a BMR of 0.5 SD can be used

* Results for a | SD BMR should always be shown for comparison when using different
BMRs.

21



P Why Use SD as the BMR for
EPA Continuous Data?

For a continuous endpoint in a normally distributed population, if

* 1.4% of the animals in the control group are assumed to have an “abnormal
response,’ a change in the mean response by one standard deviation will result in
0% of the animals reaching the abnormal response level (Crump, 1995)

* This response in 10% of the animals is comparable to the 10% BMR used in
dichotomous data modeling

NOTE:This assumes a simple shift in a normal distribution. Some
toxicity responses may not behave this way

22



"\ Why Use SD as the BMR for
EPA . Continuous Data?

Probability
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£ The Hybrid Approach for
SEPA Continuous BMRs

* The “hybrid approach” is an alternative method for selecting a BMR
in order to calculate a BMD for continuous data

* Using the hybrid approach, risk is expressed in the same manner as
with dichotomous models - as added or extra risk.

*  Two parameters must be selected by the user:

*  The benchmark response (BMR) — expressed as either added or extra risk (e.g., |0%
extra risk)

* The background rate (i.e., probability) of an adverse response in the control group

24



wEPA The Hybrid Approach

Consider at BMR = 10% and a background rate = 1%

Model calculates the cut-off values in the control group distribution
that correspond to the background rate

Model calculates the dose that corresponds to a shift in the mean that
results in 10.9% of the animals falling beyond the cut-off values

0.3 -

<—— P(d) = (0.10 X [1 — P(0)]) + P(0)
= (0.10 x [1 — 0.99]) + 0.01 = 10.9%

0.25 -

0.2 -

015 - Response

0.1 -

0.05 -

25



Selection of a Specific Model

Examples:
* Dichotomous:
» Saturable processes demonstrating Michaelis-Menten kinetics
Biological (Dichotomous Hill model)
Interpretation * Two-stage clonal expansion model (cancer endpoints)
* Continuous:
* Can use the Hill or Exponential models for receptor-mediated
responses

* U.S. EPA’s IRIS program uses the multistage model for cancer data (i.e.,
dichotomous data)
 sufficiently flexible to fit most cancer bioassay data
* provides consistency across cancer assessments
* U.S. EPA’s OPP group uses the Exponential models for modeling
acetylcholinesterase inhibition data

Policy Decision

However, in the absence of biological or policy-driven considerations, criteria
Otherwise for final model selection are usually based on whether various models
mathematically describe the data

26



SEPA

Dichotomous Models

Functional form

# of
Parameters?

Low Dose
Linearity

Model fits

k - Yes, if B, >0
i +(1-y)|1- - X’ roH
Multistage y+@-y) [ eXp{ Zj=1 B }] 1+k No, if B, = 0 All purpose
1
Logistic 1+ expl—(a + X)) 2 Yes Simple; no background
Probit D (a + BX) 2 Yes Simple; no background
- y+@-vy) All purpose; S-shape with
Log-logistic 77 exp{—[a + £ In(X)]} 3 No plateau at 100%
. All purpose; plateau S-shape
- 1—-y)® In(X !

Log-probit v+ -y) ®la+ Fin(x) 3 No with plateau at 100%

Bx
Gamma y+@ -y U t“_letdt] /T (@) 3 No All purpose

0
Weibull Y+ (1 —p)[1 — exp{—BX“}] 3 No "Hockey stick” shape

. (U — v X ) . ) .

D!chotomous X g+ g 4 Yes Symmetrical, S-shape with
Hill 1+exp{—a—b xIn(X)} plateau

@ Background parameter =y. Background for hill model=v x g

27



FPA . Continuous Models

# of

Model Name Functional Form Model Fits
Parameters

All purpose, can fit non-

Polynomial® ﬁ{) + ﬁlX + ﬁZXZ + ...+ ﬁan 1+n symmetrical S-shaped

datasets with plateaus

Power Yy + ﬁXcD 3 L-shaped
n
Hill Y+ (U X X ) 4 Symmetrical, sigmoidal,
(k™ + XM) S-shape with plateau

E ial®
xponential ey O x exp{+1 x b x X}

Model3 @ X exp{£1x (b x X)%}
Model4 @ X [c—(c—1)xexp{tlXxb x X}]
Models @ X [c—(c—1) X exp{£1 x (b x X)4}]

All purpose (Models 2 & 3)
Symmetrical and asymmetrical
S-shape with plateau (Models
4 & 5)

A W WwWwN

2 The stand-alone Linear model in BMDS is equal to a first-order polynomial model
b Nested family of 4 related models described by Slob (2002) and included in the PROAST software of RIVM

28



Restricting Parameters in
Dichotomous MLE Models

Dichotomous MLE models are conceptually restricted so that
probabilities are positive numbers no greater than one

By default, BMDS models are restricted to prevent biologically
implausible curve shapes

* For instance; power parameters can be restricted to be 2| and < |8
* See BMDS User Guide for details on EPA preferred default model restrictions

These MLE model restrictions can impact statistical calculations such
as the goodness-of-fit p-value and AIC

* Currently,a parameter estimate that “hits a bound” impacts a model’s degrees of
freedom (DF) (in BMDS, DF is increased by | for p-value calculation)

*  When a parameter hits a bound, that parameter is not counted towards the AIC
penalization (EPA’s Statistical Working Group may modify this approach in the future)

29



a FDA Continuous Model
VLI Distributions

Data can be assumed to be normally or lognormally distributed for
continuous data

* This reflects the distribution of the data per se, not how the modeling is done

* Many biological parameters are lognormally distributed; a lognormal distribution is
also useful to consider whenever responses are constrained to be positive

* When using summary data (observed means and SD), modeling with a log-normal
distribution gives an approximate maximum likelihood estimate

* The SD is homogenous on a log-scale when within dose-group variance is
proportional to the mean response
An extra parameter is needed to model the within dose-group
variance if normality is assumed

Sometimes, the extra parameter can have significant impact on the
BMD estimation if the ‘“‘Hybrid’’ approach is used (Shao et al., 2013)

30



<EPA

Continuous Model
Distributions

Response
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wEPA Does the Model Fit the Data?

Tests of interest (response/variance modeling) (continuous MLE models

only)

* Test | cut-off:p <0.10
* Tests 2 and 3 cut-off: p > 0.05

Global measurement: goodness-of-fit p value (p > 0.1) (MLE models
only)

Local measurement: Scaled residuals (absolute value < 2.0) (MLE
models only)

Visual inspection of model fitting.
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< EPA Selecting a Final ‘“‘Best” Model

Often, more than one model or modeling options will result in an
acceptable fit to the data.

When comparing models from different families, Akaike’s Information
Criterion (AIC) is a commonly used method to identify the best
fitting model (the lower the AIC, the better)

« AIC=-2xLL+2xp
* LL = log-likelihood at the maximum likelihood estimates for parameters

* p = number of model degrees of freedom (dependent on total number of model
parameters, number of model parameters that hit a bound, and the number of dose
groups in your dataset)

*  Only the DIFFERENCE in AIC is important, not actual value
Consider using the lowest BMDL if BMDL estimates from acceptable
models are not sufficiently close, indicating model dependence

*  What is “sufficiently close” can vary based on the needs of the assessment, but
generally should not be more than 3-fold.
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wEPA Single MLE Model Selection

When fitting multiple models to a single dataset, many models can
(and often will) statistically fit the data well

* So, is there a compelling reason (toxicology, MOA, etc.) to pick one model over any
other?

*  Or (most commonly) is the model selected based on pure statistical fit?

* This is model uncertainty

LLE Wl

© Observed

34



EPA Addressing Model Uncertainty

* Multiple approaches have been developed for addressing and/or
characterizing model uncertainty

Flexible parametric models — some research has indicated that some models
(Exponential 5) are flexible enough to fit the majority of dose-response shapes
observed in the literature

Semi- or non-parametric models — completely data-driven models that are hyper-
flexible

Model averaging — methods by which the results of a suite of individual models are
averaged together to give one estimate of the BMD and BMDL

35



o Why Move Away from Single
<EPA Model Selection?

* Research convincingly shows that single model selection practices are
often sub-optimal compared to model averaging

Table 4. AIC-based model selection percentages over all configurations (A-F) in Table 2 for per-dose sample size of N=50
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£ BMDS Bayesian Model
SEPA Averaging

Unique aspects of EPA/NIOSH model averaging approach:

* Informed priors

* Based on knowledge of how chronic studies are designed and where the BMD |, estimates
are most likely to be relative to a study’s maximum dose

* Disentangle issues related to models that “degenerate” to other models (Weibull, Gamma,
etc.)

* Prevent over-fitting of individual models

* Provides a single standard set of priors in the “non-research” version of BMDS (i.e., Excel
version) that gives reasonable, health-protective, consistent, and reproducible results

* Laplace approximation of posterior density
* Minimal loss of accuracy or reliability

 Substantial increase in speed (~10-fold faster than MCMC approaches implemented in
other platforms)

* Increases in speed are critically important for batch analyses of many datasets
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Priors on a Dose-Response
Curve

*  For setting priors over a dose-response curve, there are many options

* Two that have been published on in the literature are:

* Flat Priors: In the search for an objective prior, the selection of a prior that is
uniform over some range can be used (Shao and Shapiro, 2018)

* Focused Prior: focus on building a prior on a value of inferential importance. In this
case, the value of interest is the benchmark dose (Fang et al., 2017, BMDS 3.2,2019)

* In judging the behavior of these prior options, the focus is on the
maximum tolerated dose (MTD) as there is a large literature about
the correlation between MTD and the point of departure (NRC, 1993)
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wEPA Flat Priors

* Place uniform priors over standard dose-response model parameters

* Benefits:
* This is most like previous BMD analyses (i.e., maximum likelihood estimation with
bounds set on model parameters

* If the true parameter is in the bounds (of the prior), the true parameter value will
be obtained as n — o

* Analysis is not biased in most cases

e [ssues:

* Does not necessarily generate dose-response curves that look like real data
* Are not created based on the parameter of interest;i.e., the BMD

¢ Can bias analyses in “edge” cases

39



\etEPA Flat Priors

*  For the Weibull model,
a flat prior has
behavior that may not
be intuitive in terms of |
generating data and s
the BMD (in terms of A W
the MTD) o

Prior on the BMD Prior on the DR curves.

Pacent Response
08

Densay

Weibull Flat prior @ ~ Uniform(1,15) “Super Uninformative” Prior @ ~ Uniform(0.5,1000)

*  One further issue with
flat priors is the |
selection of the bounds: il
the flatter (or more w

|

uniform) the prior, the ~‘
more biased towards : | W i _‘ L i
the MTD the BMD is e J T e
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=PA Focused Prior

Instead of looking at priors over all model parameters, or specific

parameters, place a reasonable prior over the value of ultimate
interest, the BMD

Benefits:

* All models are wrong, so the parameters are abstract entities. Ve are ultimately
interested in the value of the BMD

* In terms of MTD and dose-response study design, the value of the BMD can be
expressed as a percentage of the MTD.

Issues:

* Can be perceived as subjective in terms of what is “right”
* Significant prior impact in low data cases

* Might change based upon target quantity (i.e., may be different for BMR = 0% vs.
BMR = 1%)
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\Q/EPA Focused Prior

* Here,assuming a prior on the BMD such that the majority is between
0 and 0.5 of the MTD

* Result is similar to Informative priors to the null, but the variability
inn the possible curves shapes is reduced
Prior on the BMD Prior on the DR curves.

Density
0 20
Parcen! Response
06 08
1

05
02

0.0
0.0

00 0.2 04 08 0B 10 0.0 02 04 08 08
BMD Prior
&8 % of MTD Dose as % of MTD

* In BMDS 3.1.2 priors for dichotomous models are set such that the
BMD is expected to fall within ~0.2-0.5 of the MTD
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Parameter Constraints vs.

¢ )
vEPA Priors

In MLE versions of models, hard constraints are placed on parameters
to prevent certain curve shapes

For example, the Weibull model:
Weibull =y + (1 — y)(1 — exp[—Ld%])
* Constraint often put on o parameter (2 |) to prevent supralinear linear curves

*  When parameters are estimated on boundary, statistical inferences are impacted

Bayesian models replace hard-constraints with parameter priors that
place low prior probabilities on certain parameter values

* Prior for a parameter is: log(a) ~ Normal( log(2),0.18)
* This corresponds to a very low probability that the value of the o parameter is <l

* So, parameter priors allow certain parameter values, but conclusive data is required for
parameter to take those values

43



o FDA Estimation of Posterior
VLI M Distribution

Analytical means are necessary to fit dose-response models to the
observed data and estimate the posterior distribution

MCMC (Markov Chain Monte Carlo) — Gold standard: this method
uses sampling from the posterior distribution using a method that
converges to that distribution

*  Will give the posterior distribution
* Can never know if converges to the target distribution

* Can take time and is more complicated than finding the maximum

Maximum a-posteriori - find the maximum of the posterior
distribution and use a normal like approximation

* Don’t know the size of the sample that adequately approximates the posterior
* Very fast computationally compared to MCMC
* Accurate for the right-sized posterior
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> EPA Bayesian Model Averaging

Prior model averaging methods used AIC or BIC (Bayesian
Information Criterion) as weights in the averaging

BMDS instead uses the Laplace approximation to the marginal density
of the data and weights are calculated as

f (M)
imq f(M)];

The model-averaged BMD point estimate is the weighted average of
the MAP estimates from individual models

. (M |D) =

BMDL and BMDU values are estimated similar to the profile
likelihood approach except that the posterior density is profiled
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e BMDS Bayesian Model
SEPA Averaging

EPA/NIOSH BMA approach was extensively tested against 1) MCMC
Bayesian MA approach with uninformative priors;2) BMDS using 2012
model selection criteria; and 3) flexible non-parametric model

34 separate ‘“true-dose’ curves used to test approaches

Percentage of Times BMDL Coverage is >90% than True BMD Value

True BMD BMA BMDS NP MCMC
All templates 70.6% 41.2% 76.5% 47.1%
True BMD < 0.2x max dose 63.2% 26.3% 57.9% 36.8%
True BMD > 0.2x max dose 80% 60% 100% 60%
True BMD < 0.1x max dose 60% 30% 20% 40%
True BMD > 0.1x max dose 75% 45.8% 100% 50%
46




wEPA Continuous Model Averaging

*  Continuous model averaging poses a different problem from
dichotomous model averaging:

* Slob and Setzer (2014) showed that using the Exponential 5 or Hill model was usually
adequate for fitting a wide array of dose-response shapes

* Shao and Gift (2013) showed that the BMDs estimated using a BMR based on relative
deviation is essentially the same when using either the normal or log-normal
distribution

*  So,why do we even need model averaging for continuous endpoints?
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wEPA Continuous Model Averaging

There are cases where the distribution does actually make an impact
in the modeling results:

* Using the standard deviation definition of the benchmark response will result in
different benchmark doses based upon the assumed distribution

* The same is true for the hybrid approach

Using model averaging approaches, there is no reason one can not
average over models and distributions

* The assumed distribution is technically part of the model too.
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wEPA Continuous Model Averaging

Looking at the mean response, everything seems similar to
dichotomous model averaging

Dose response for all models

201

Hill. Normal. NCV
Hill. Normal.CV
Hill. Log.Normal
Power.Normal NCV
Power.Normal.CV
= = Power.Log.Normal
-  Exp3..Normal NCV
- = Exp3.Normal.CV
- = Exp3..Log.Normal
- = Exp5.Normal.NCV
Exp5.Normal.CV
Exp5.Log.Normal
Poly2 Normal.CV
Poly2.Normal. NCV
Poly2.Log.Normal

Dose



AN
wEPA . Continuous Model Averaging

*  But things change when you look at the CDF

MA BMD CDF
MA BMD CDF

Hybrid approach Relative Deviation

Cumulative density
2
Cumulative density
8
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wEPA ' Continuous Model Averaging

* The strange Relative Deviation CDF is due to the multiple modes

from the model average
BMD Critical Effect distribution

Density
0.02 0.03 0.04
1 1 1

0.01
1

0.00
|

60 80 100 120 140 160 180

BMD
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wEPA Continuous Model Averaging

* Benefits:

*  Up to 24 model-distribution-variance combinations included in averaging suite: up to
eight models (Exp2, Exp3, Exp 4, Exp5, Hill, Power, Poly2, Linear) X three different
distribution/variance combinations (normal — constant variance, normal — non-
constant variance, log-normal-constant variance)

* Model averaging provides a better picture of uncertainty than using one flexible
parametric model

*  The ultimate selection of priors for continuous models is still being
researched for BMDS.

* Priors are generally diffuse
* Are designed to prevent drastic (i.e., non-biologically plausible) on/off responses

52



vEFPA .. Dichotomous Data - Cancer

* Response is measured as on/off or true/false

* You either have it or you don’t

* BMDS can only model positive dose-response trends,
where incidence increases with dose

Description

E
xamp.le *Cancer: Tumor incidence
Endpoints
* Dose
Model Inputs * Number of Subjects

* Incidence or Percent Affected

* Multistage Cancer:
* B coefficients always restricted to be positive
* Cancer slope factor calculated
* Linear extrapolation shown on plot

k
*Form: v+ (1 -7) ll—exp{— E _ lﬁ’ij}]
j=




wEPA \i; BMD Cancer Analysis

N
\\

1. Choose BMR(s) and dose metrics to
evaluate; Fit all degrees of Multistage
model (n-2 groups) and RUN models

2. Are all

For models with appropriate fit,

use BMD and BMDL from model
with lowest AIC

parameters
positive (i.e., >0)?

NO

3. Consider 1%t and 2" degree Multistage
models only: judge fit statistics

4. Do models fit Sl s
adequately?

Both fit: if any parameter =0,
use model with lowest BMDL. If
not, using model with lowest AIC.

Only one fits: use No model fits:
that model consult statistician

Document BMD analysis, including uncertainties, as outlined in reporting requirements
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EPA Multiple Tumor Analysis

Often, an individual cancer bioassay will report dose-related increases
in multiple, independent tumor types

* Basing unit risk estimates on only one tumor type may underestimate the

carcinogenic potential of a chemical that is observed to induce neoplasia at multiple
sites in a bioassay (NRC, 1994)

MS-Combo model allows users to calculate the BMD and BMDL for
any combination of tumors observed in a single bioassay.

The major assumption of the MS-Combo model is that different
tumor types are independent of one another

* Independence can be determined based on statistical or biological considerations
Individual tumor types must first be modeled with the multistage
model to determine which degree model best fits the data

* This allows individual tumors to be fit with models that best characterize their
specific dose-response shapes
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wEPA Poly-3 Survival Adjustment

The poly-3 survival adjustment is a method to calculate survival-
adjusted lifetime tumor rates by fractionally weighting the number of
exposed animals (i.e., sample size)

* “Poly-3” refers specifically to using a 3" order polynomial to describe the tumor
incidence function in time

* Other polynomials can be used, but estimating the correct polynomial can be difficult

* Failure to adjust for differential mortality can bias modeling results

For an individual dose group (i), the poly-3 survival adjusted sample
size is:

ng
* —
j=1

* Where, w;; = 1 if the jth animal in the ith dose group had a tumor at observation

(i.e., necropsy); otherwise, w;; = tl-?’j, where t;; is the fraction of duration of the study

for which the animal survived
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Developmental Toxicity Data

Examples

Description

Model Inputs

Dichotomous

* Malformations
* Fetal death

* Fetal response (on/off) reported for
individual exposed dams

* BMDS can only model positive dose-
response trends, where incidence
increases with dose

* Dose

* Number of fetuses at risk for each
litter (i.e., individual litter level
data required)

* Number of fetuses affected for
each litter

Continuous

* Fetal body weight

* Fetal organ weight

* Pup weight gain
PND 7-14

* Response is measured on a
continuous scale

* Response is a numerical value with a
measure of variability

* Response can either increase or
decrease with dose

* Responses are measured for fetuses
within individual litters

* Dose

* Number of Subjects (litters or
fetuses)

* Mean response (mean of litter
means; per dose group) OR
individual fetal responses

* A measure of variability in
response (standard deviation or
standard error; standard deviation
automatically calculated when
entering individual responses)
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Modeling Developmental
Toxicity Data

Must account for the litter effect; the propensity of litter-mates to
respond more alike one another compared to offspring from different
litters

* Failure to do so will underestimate the variances

* Meaning, dose-response modeling results will be biased
For dichotomous data:
* Can use nested models in BMDS if individual dam (i.e., individual litter) data is
available

* If only summary data (i.e., dose group level) data is available, can use Rao-Scott
transformation and regular dichotomous models

For continuous data:

 If individual fetal or litter data is available, correct variances are easy to calculate
* If only summary data is available, approximate methods are used to correct variances

* Regular continuous models used in both cases
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<EPA

Future Directions for BMDS

Implementation of continuous Bayesian model averaging

* Approach will average over models, distributions, and variances

* Addresses the uncertainty with having to assume a particular distribution a priori

Release of BMDS-HAWC

* Interoperable online version of BMDS

* Fully integrated into EPA’s HAWC online assessment database
Release of BMDS-R

* “Research” version of BMDS
* Fully configurable

* Will facilitate further development of 3r4-party BMDS products
Continued dose-response research

* Model priors
* Unified model suite for dichotomous and continuous data

* Nested continuous model for incorporating litter specific covariates
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