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Disclaimer

The views expressed in this presentation are those of the 
author(s) and do not necessarily reflect the views or 
policies of the US EPA or NIOSH.
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U.S. EPA Benchmark Dose 
Technical Guidance

• EPA’s Benchmark Dose Technical Guidance document: 

http://www.epa.gov/raf/publications/benchmarkdose.htm

• Other guidance documents relevant to BMD modeling available at: 

http://epa.gov/iris/backgrd.html

• BMDS User Guide, technical memos, glossary of terms and more at 

https://www.epa.gov/bmds
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A Brief History of the BMD 
Method

1983 EPA workshop on epigenetic carcinogenesis

1984
“Benchmark dose” coined by Kenneth Crump in “A new method for 
determining allowable daily intakes”

1985–1994 Several EPA BMD-related publications and workshops 

1995 EPA Risk Assessment Forum discusses use of BMD in risk assessment

1995 First IRIS BMD-based RfD (Methylmercury)

2000 EPA benchmark dose draft technical guidance released

2000 EPA benchmark dose software (BMDS) released

2000–2011 Multiple versions of BMDS released

2012 EPA benchmark dose final technical guidance released

2018/19 Incorporation of Bayesian model averaging into BMDS
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Benchmark Dose – Key 
Terminology

• Benchmark Response (BMR) - a change in response for an effect 

relative to background response rate of this effect

• Basis for deriving BMDs

• User defined

• Examples include:

• 1 standard deviation increase in body 

weight (continuous response)

• 10% increase in hepatocellular 

hyperplasia (dichotomous response)
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Benchmark Dose – Key 
Terminology

• Benchmark dose or concentration (BMD or BMC) - the maximum 

likelihood  estimate of the dose associated with a specified benchmark 

response level

• BMD – oral exposure

• BMC – inhalation exposure

• However, the term benchmark 

dose modeling is frequently used to 

describe the modeling process for 

both oral and inhalation exposures.
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• Benchmark dose or concentration lower-confidence limit (BMDL or 

BMCL) – the lower limit of a one-sided confidence interval on the 

BMD (typically 95%)

• BMDL – oral exposure

• BMCL – inhalation exposure

• Accounts for elements of 

experimental uncertainty, including:

• Sample size

• High background response

• Response variability

• Preferred POD

Benchmark Dose – Key 
Terminology
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Advantages of BMD Approach

Subject
BMD

Approach

Dose selection BMD and BMDL not constrained to be a dose used in study

Sample size
Appropriately considers sample size:  as sample size decreases, 
uncertainty in true response rate increases (i.e.,  ↓ N = ↓ 
BMDL)

Cross-study comparison
Observed response levels at a selected BMR are comparable 
across studies (recommended to use BMD as point of 
comparison)

Variability and uncertainty in 
experimental results

Characteristics that influence variability or uncertainty in 
results (dose selection, dose spacing, sample size) are taken 
into consideration

Dose-response information Full shape of the dose-response curve is considered

NOAEL not identified in study
A BMD and BMDL can be calculated even when a NOAEL is 
missing from the study
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Study Size Effects on 
BMD/BMDL Calculation
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NOAEL
p-value = 0.820

LOAEL
p-value = 0.018

100 Animals per 
Dose Group



Study Size Effects on 
BMD/BMDL Calculation
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10 Animals per 
Dose Group

NOAEL
p-value = 0.670

LOAEL
p-value = 0.029



Challenges in the Use of the 
BMD Method

• Requires knowledge on how to use software and interpret results

• In some cases, more data are required to model benchmark dose than 

to derive a LOAEL/NOAEL

• Continuous data require a measure of variability (SD or SE) for each dose group’s 

mean response

• Individual animal-level data are required for some models

• Results highly dependent on the quality of the data

• Sometimes the data cannot be adequately fit by the available models 

in BMDS

• Currently “best” model selection can add complexity and subjectivity 

to dose-response analyses
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U.S. EPA’s Benchmark Dose 
Software

• EPA’s Benchmark Dose Software (BMDS, current version 3.1.2) is a 

freely-available, open-source dose-response modeling product 

primarily for analysis of toxicological data

• BMDS 3.1.2:

• Dichotomous data – data measured as binary responses (non-cancer and cancer)

• Suite of traditional Maximum Likelihood (MLE) and Bayesian models

• Bayesian model averaging

• Multi-tumor analysis (MS-Combo model)

• Continuous data – data measured on some continuous scale

• Suite of traditional MLE models

• Nested dichotomous data – binary, clustered responses

• BMDS 3.2:

• Will implement Bayesian models and model averaging for continuous data

• BMDS 2.7 (Archive):

• Repeated response data – continuous data measured at multiple time points 13



Types of Data
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Data Description Examples Model Inputs

Dichotomous • Response is measured as on/off or 
true/false 

• BMDS can only model positive dose-
response trends, where incidence 
increases with dose

• Tissue 
histopathology 
(non-cancer)

• Tumor incidence

• Dose
• Number of Subjects
• Incidence OR Percent Affected

Continuous • Response is measured on a 
continuous spectrum

• Response is a numerical value with a 
measure of variability (i.e., standard 
error or standard deviation)

• Response can either increase or 
decrease with dose

• Body weight
• Organ weight
• Enzyme Activity

• Dose
• Number of Subjects 
• Mean response (per dose group) 

OR individual animal responses
• A measure of variability in 

response (standard deviation or 
standard error; standard deviation 
automatically calculated when 
entering individual responses



BMD Analysis – Five Steps
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1. Choose BMR(s) and dose metrics to 
evaluate; select suite of models to run; 

set parameter options, RUN models

2. Do any models 
adequately fit the 

data?

Variance tests –
continuous data

Global (𝚾𝟐 p-value) 
and local (scaled 

residual) fit

Visual inspection of 
plot

3. Are BMDLs 
reasonably close 

(3-fold)

Have all 
model/parameter values 

been considered?

4b. Select model 
with lowest AIC

4a. Select model 
with lowest BMDL

Data not amenable 
to BMD modeling

5. Document BMD analysis, including uncertainties, as outlined in reporting 
requirements

YES

NO
YES

NO

NO YES

Consider model 
averaging if multiple 

models have equal AICs



Select a Benchmark Response

• BMR should be near the low end of the observable range of increased 

risks in a bioassay

• BMRs that are too low can impart high model dependence

• Model dependence can affect BMDL estimation such that BMDLs are 

based on model behavior and not the observed data
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Dichotomous BMR Types

• For dichotomous data, BMRs are expressed as:

• Added risk – AR(d) = P(d) – P(0)

• Extra risk – ER(d) = [P(d) – P(0)]/[1 – P(0)]

• Extra risk is recommended by the IRIS Program, and is used in IRIS 

risk assessments.
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10% Added Risk
0.10 =P(d) – P(0) ; if P(0)=.50  
P(d) = 0.10 + P(0) = 0.10 + 0. 50 = 0.60

10% Extra Risk
0.10 =[P(d) –P(0)]/[1-P(0)]; if P(0) = .50  
P(d) = 0.10 x [1 - P(0)] + P(0) = (0.10 x 0.50) + 0.50 = 0.55

The dose will be lower for a 10% Extra risk 
than for a 10% Added risk if P(0) > 0



Dichotomous BMR Selection

• An extra risk of 10% is recommended as a standard (not default) 

reporting level for dichotomous data. 

• Customarily used because it is at or near the limit of sensitivity in most cancer 

bioassays and in non-cancer bioassays of comparable size

• In some situations, use of different BMRs is supported

• Biological considerations sometimes support different BMRs (5% for frank effects, 

>10% for precursor effects)

• When a study has greater than usual sensitivity, a lower BMR can be used (5% for 

developmental studies)

• Results for a 10% BMR should always be shown for comparison when using different 

BMRs. 
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Continuous BMR Types

BMR Type BMR Calculation

Standard Deviation: 𝜇0 ± (𝐵𝑀𝑅𝐹 × 𝑆𝐷0)

Relative Deviation: 𝜇0 ± (𝐵𝑀𝑅𝐹 × 𝜇0)

Hybrid Approach:

Increasing dose-response:      
Pr 𝑋 > 𝑋0 𝐷 −Pr 𝑋 > 𝑋0 0

1−Pr 𝑋 > 𝑋0 0

Decreasing dose-response:     
Pr 𝑋 < 𝑋0 𝐷 −Pr 𝑋 < 𝑋0 0

1−Pr 𝑋 < 𝑋0 0

Where:

μ0 = Modeled mean response at control dose

SD0 = Modeled standard deviation at control dose

BMRF = BMR factor (user input used to define BMR)

Pr 𝑋 < 𝑋0 0 or Pr 𝑋 < 𝑋0 0 = Background probability that defines adverse response
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Using Relative Deviation as the 
BMR Type

• Preferred approach is to select a BMR that corresponds to a level of 

change that represents a minimal biologically significant response (i.e., 

10% decrease in body weight, based on the model-estimated control 

mean)

• When using RD as the basis for the BMR, the user must check that the 

model-estimated control mean approximates the observed control 

means; if not, the BMD could be misspecified

• Consequence of using BMRs based on relative deviation is that the 

extra risk corresponding to the change can be quite high (50% by 

default)
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Using SD as the BMD for 
Continuous Data

• Often, information on what response is a minimal biologically 

significant response is lacking

• In the absence of a biological consideration, a BMR of a change in the 

mean equal to one control standard deviation (1.0 SD) from the 

control mean is recommended. 

• In some situations, use of different BMRs is supported

• For more severe effects, a BMR of 0.5 SD can be used

• Results for a 1 SD BMR should always be shown for comparison when using different 

BMRs. 
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Why Use SD as the BMR for 
Continuous Data?

• For a continuous endpoint in a normally distributed population, if 

• 1.4% of the animals in the control group are assumed to have an “abnormal 
response,” a change in the mean response by one standard deviation will result in 
10% of the animals reaching the abnormal response level (Crump, 1995)

• This response in 10% of the animals is comparable to the 10% BMR used in 
dichotomous data modeling

• NOTE: This assumes a simple shift in a normal distribution. Some 
toxicity responses may not behave this way
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Why Use SD as the BMR for 
Continuous Data?
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The Hybrid Approach for 
Continuous BMRs

• The “hybrid approach” is an alternative method for selecting a BMR 

in order to calculate a BMD for continuous data

• Using the hybrid approach, risk is expressed in the same manner as 

with dichotomous models – as added or extra risk.

• Two parameters must be selected by the user:

• The benchmark response (BMR) – expressed as either added or extra risk (e.g., 10% 

extra risk)

• The background rate (i.e., probability) of an adverse response in the control group
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The Hybrid Approach

• Consider at BMR = 10% and a background rate = 1%

• Model calculates the cut-off values in the control group distribution 

that correspond to the background rate

• Model calculates the dose that corresponds to a shift in the mean that 

results in 10.9% of the animals falling beyond the cut-off values 

0

0.05

0.1

0.15

0.2

0.25

0.3

2 3 4 5 6 7 8 9 10 11 12 13 14

Background 
response = 1%
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𝑃 𝑑 = 0.10 × 1 − 𝑃 0 + 𝑃(0)

= 0.10 × 1 − 0.99 + 0.01 = 𝟏𝟎. 𝟗%

Response 
= 10.9%



Selection of a Specific Model

Biological
Interpretation

Examples:
• Dichotomous:

• Saturable processes demonstrating Michaelis-Menten kinetics 
(Dichotomous Hill model)

• Two-stage clonal expansion model (cancer endpoints)
• Continuous:

• Can use the Hill or Exponential models for receptor-mediated 
responses

Policy Decision

• U.S. EPA’s IRIS program uses the multistage model for cancer data (i.e., 
dichotomous data)
• sufficiently flexible to fit most cancer bioassay data
• provides consistency across cancer assessments

• U.S. EPA’s OPP group uses the Exponential models for modeling 
acetylcholinesterase inhibition data

Otherwise
However, in the absence of biological or policy-driven considerations, criteria 
for final model selection are usually based on whether various models 
mathematically describe the data
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Dichotomous Models

Model 
name

Functional form
# of 

Parametersa

Low Dose 
Linearity

Model fits

Multistage 1+k
Yes, if β1 > 0
No, if β1 = 0

All purpose

Logistic 2 Yes Simple; no background

Probit 2 Yes Simple; no background

Log-logistic 3 No
All purpose; S-shape with 
plateau at 100%

Log-probit 3 No
All purpose; plateau S-shape 
with plateau at 100%

Gamma 3 No All purpose

Weibull 3 No ”Hockey stick” shape

Dichotomous 
Hill

4 Yes
Symmetrical, S-shape with 
plateau

a Background parameter = γ.  Background for hill model = v × g
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Continuous Models

Model Name Functional Form
# of 

Parameters
Model Fits

Polynomiala 1 + n
All purpose, can fit non-
symmetrical S-shaped
datasets with plateaus

Power 3 L-shaped

Hill 4
Symmetrical, sigmoidal, 
S-shape with plateau

Exponentialb

Model 2
Model 3
Model 4
Model 5

2
3
3
4

All purpose (Models 2 & 3)
Symmetrical and asymmetrical 
S-shape with plateau (Models 
4 & 5)

a The stand-alone Linear model in BMDS is equal to a first-order polynomial model
b Nested family of 4 related models described by Slob (2002) and included in the PROAST software of RIVM
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Restricting Parameters in 
Dichotomous MLE Models

• Dichotomous MLE models are conceptually restricted so that 

probabilities are positive numbers no greater than one

• By default, BMDS models are restricted to prevent biologically 

implausible curve shapes

• For instance; power parameters can be restricted to be ≥1 and < 18

• See BMDS User Guide for details on EPA preferred default model restrictions

• These MLE model restrictions can impact statistical calculations such 

as the goodness-of-fit p-value and AIC

• Currently, a parameter estimate that “hits a bound” impacts a model’s degrees of 

freedom (DF) (in BMDS, DF is increased by 1 for p-value calculation)

• When a parameter hits a bound, that parameter is not counted towards the AIC 

penalization (EPA’s Statistical Working Group may modify this approach in the future)
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Continuous Model 
Distributions

• Data can be assumed to be normally or lognormally distributed  for 
continuous data

• This reflects the distribution of the data per se, not how the modeling is done

• Many biological parameters are lognormally distributed;  a lognormal distribution is 
also useful to consider whenever responses are constrained to be positive

• When using summary data (observed means and SD), modeling with a log-normal 
distribution gives an approximate maximum likelihood estimate 

• The SD is homogenous on a log-scale when within dose-group variance is 
proportional to the mean response

• An extra parameter is needed to model the within dose-group 

variance if normality is assumed

• Sometimes, the extra parameter can have significant impact on the 

BMD estimation if the “Hybrid” approach is used (Shao et al., 2013)
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Continuous Model 
Distributions
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Does the Model Fit the Data?

• Tests of interest (response/variance modeling) (continuous MLE models 

only)

• Test 1 cut-off: p < 0.10

• Tests 2 and 3 cut-off: p > 0.05

• Global measurement: goodness-of-fit p value (p > 0.1) (MLE models 

only)

• Local measurement: Scaled residuals (absolute value < 2.0) (MLE 

models only)

• Visual inspection of model fitting.
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Selecting a Final “Best” Model

• Often, more than one model or modeling options will result in an 

acceptable fit to the data.

• When comparing models from different families, Akaike’s Information 

Criterion (AIC) is a commonly used method to identify the best 

fitting model (the lower the AIC, the better)  

• AIC = -2 x LL + 2 x p

• LL = log-likelihood at the maximum likelihood estimates for parameters

• p = number of model degrees of freedom (dependent on total number of model 
parameters, number of model parameters that hit a bound, and the number of dose 
groups in your dataset)

• Only the DIFFERENCE in AIC is important, not actual value

• Consider using the lowest BMDL if BMDL estimates from acceptable 

models are not sufficiently close, indicating model dependence

• What is “sufficiently close” can vary based on the needs of the assessment, but 

generally should not be more than 3-fold.
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Single MLE Model Selection

• When fitting multiple models to a single dataset, many models can 

(and often will) statistically fit the data well

• So, is there a compelling reason (toxicology, MOA, etc.) to pick one model over any 

other?

• Or (most commonly) is the model selected based on pure statistical fit?

• This is model uncertainty
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Addressing Model Uncertainty

• Multiple approaches have been developed for addressing and/or 

characterizing model uncertainty

• Flexible parametric models – some research has indicated that some models 

(Exponential 5) are flexible enough to fit the majority of dose-response shapes 

observed in the literature

• Semi- or non-parametric models – completely data-driven models that are hyper-

flexible

• Model averaging – methods by which the results of a suite of individual models are 

averaged together to give one estimate of the BMD and BMDL
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Why Move Away from Single 
Model Selection?

• Research convincingly shows that single model selection practices are 

often sub-optimal compared to model averaging
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BMDS Bayesian Model 
Averaging

• Unique aspects of EPA/NIOSH model averaging approach:

• Informed priors

• Based on knowledge of how chronic studies are designed and where the BMD10 estimates 

are most likely to be relative to a study’s maximum dose

• Disentangle issues related to models that “degenerate” to other models (Weibull, Gamma, 

etc.)

• Prevent over-fitting of individual models

• Provides a single standard set of priors in the “non-research” version of BMDS (i.e., Excel 

version) that gives reasonable, health-protective, consistent, and reproducible results

• Laplace approximation of posterior density

• Minimal loss of accuracy or reliability

• Substantial increase in speed (~10-fold faster than MCMC approaches implemented in 

other platforms)

• Increases in speed are critically important for batch analyses of many datasets
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Priors on a Dose-Response 
Curve

• For setting priors over a dose-response curve, there are many options

• Two that have been published on in the literature are:

• Flat Priors:  In the search for an objective prior, the selection of a prior that is 

uniform over some range can be used (Shao and Shapiro, 2018)

• Focused Prior: focus on building a prior on a value of inferential importance.  In this 

case, the value of interest is the benchmark dose (Fang et al., 2017, BMDS 3.2, 2019)

• In judging the behavior of these prior options, the focus is on the 

maximum tolerated dose (MTD) as there is a large literature about 

the correlation between MTD and the point of departure (NRC, 1993)
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Flat Priors

• Place uniform priors over standard dose-response model parameters

• Benefits:

• This is most like previous BMD analyses (i.e., maximum likelihood estimation with 

bounds set on model parameters

• If the true parameter is in the bounds (of the prior), the true parameter value will  

be obtained as 𝑛 → ∞

• Analysis is not biased in most cases

• Issues:

• Does not necessarily generate dose-response curves that look like real data

• Are not created based on the parameter of interest; i.e., the BMD

• Can bias analyses in “edge” cases
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Flat Priors

• For the Weibull model, 

a flat prior has 

behavior that may not 

be intuitive in terms of 

generating data and 

the BMD (in terms of 

the MTD)

• One further issue with 

flat priors is the 

selection of the bounds: 

the flatter (or more 

uniform) the prior, the 

more biased towards 

the MTD the BMD is
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Focused Prior

• Instead of looking at priors over all model parameters, or specific 

parameters, place a reasonable prior over the value of ultimate 

interest, the BMD

• Benefits:

• All models are wrong, so the parameters are abstract entities.  We are ultimately 

interested in the value of the BMD

• In terms of MTD and dose-response study design, the value of the BMD can be 

expressed as a percentage of the MTD.

• Issues:

• Can be perceived as subjective in terms of what is “right”

• Significant prior impact in low data cases

• Might change based upon target quantity (i.e., may be different for BMR = 10% vs. 

BMR = 1%)
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Focused Prior

• Here, assuming a prior on the BMD such that the majority is between 

0 and 0.5 of the MTD

• Result is similar to Informative priors to the null, but the variability 

inn the possible curves shapes is reduced

• In BMDS 3.1.2 priors for dichotomous models are set such that the 

BMD is expected to fall within ~0.2-0.5 of the MTD
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Parameter Constraints vs. 
Priors

• In MLE versions of models, hard constraints are placed on parameters 

to prevent certain curve shapes

• For example, the Weibull model:

𝑊𝑒𝑖𝑏𝑢𝑙𝑙 = 𝛾 + 1 − 𝛾 1 − exp −𝛽𝑑𝛼

• Constraint often put on α parameter (≥ 1) to prevent supralinear linear curves

• When parameters are estimated on boundary, statistical inferences are impacted

• Bayesian models replace hard-constraints with parameter priors that 

place low prior probabilities on certain parameter values

• Prior for α parameter is: log(α) ~ Normal( log(2),0.18)

• This corresponds to a very low probability that the value of the α parameter is <1

• So, parameter priors allow certain parameter values, but conclusive data is required for 

parameter to take those values
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Estimation of Posterior 
Distribution

• Analytical means are necessary to fit dose-response models to the 

observed data and estimate the posterior distribution

• MCMC (Markov Chain Monte Carlo) – Gold standard:  this method 

uses sampling from the posterior distribution using a method that 

converges to that distribution

• Will give the posterior distribution

• Can never know if converges to the target distribution

• Can take time and is more complicated than finding the maximum

• Maximum a-posteriori – find the maximum of the posterior 

distribution and use a normal like approximation

• Don’t know the size of the sample that adequately approximates the posterior

• Very fast computationally compared to MCMC

• Accurate for the right-sized posterior
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Bayesian Model Averaging

• Prior model averaging methods used AIC or BIC (Bayesian 

Information Criterion) as weights in the averaging

• BMDS instead uses the Laplace approximation to the marginal density 

of the data and weights are calculated as

𝜋𝑘 𝑀𝑘 𝐷 =
𝑓 𝑀𝑘 𝐼𝑘

σ𝑖=1
𝑛 𝑓 𝑀𝑖 𝐼𝑖

• The model-averaged BMD point estimate is the weighted average of 

the MAP estimates from individual models

• BMDL and BMDU values are estimated similar to the profile 

likelihood approach except that the posterior density is profiled

45



BMDS Bayesian Model 
Averaging

• EPA/NIOSH BMA approach was extensively tested against 1) MCMC 

Bayesian MA approach with uninformative priors; 2) BMDS using 2012 

model selection criteria; and 3) flexible non-parametric model

• 34 separate “true-dose” curves used to test approaches

46

True BMD BMA BMDS NP MCMC

All templates 70.6% 41.2% 76.5% 47.1%

True BMD < 0.2x max dose 63.2% 26.3% 57.9% 36.8%

True BMD > 0.2x max dose 80% 60% 100% 60%

True BMD < 0.1x max dose 60% 30% 20% 40%

True BMD > 0.1x max dose 75% 45.8% 100% 50%

Percentage of Times BMDL Coverage is >90% than True BMD Value



Continuous Model Averaging

• Continuous model averaging poses a different problem from 

dichotomous model averaging:

• Slob and Setzer (2014) showed that using the Exponential 5 or Hill model was usually 

adequate for fitting a wide array of dose-response shapes

• Shao and Gift (2013) showed that the BMDs estimated using a BMR based on relative 

deviation is essentially the same when using either the normal or log-normal 

distribution

• So, why do we even need model averaging for continuous endpoints?
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Continuous Model Averaging

• There are cases where the distribution does actually make an impact 

in the modeling results:

• Using the standard deviation definition of the benchmark response will result in 

different benchmark doses based upon the assumed distribution

• The same is true for the hybrid approach

• Using model averaging approaches, there is no reason one can not 

average over models and distributions

• The assumed distribution is technically part of the model too.
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Continuous Model Averaging

• Looking at the mean response, everything seems similar to 

dichotomous model averaging
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Continuous Model Averaging 

• But things change when you look at the CDF
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Hybrid approach Relative Deviation



Continuous Model Averaging 

• The strange Relative Deviation CDF is due to the multiple modes 

from the model average

51



Continuous Model Averaging

• Benefits:

• Up to 24 model-distribution-variance combinations included in averaging suite:  up to 

eight models (Exp2, Exp3, Exp 4, Exp5, Hill, Power, Poly2, Linear) × three different 

distribution/variance combinations (normal – constant variance, normal – non-

constant variance, log-normal-constant variance)

• Model averaging provides a better picture of uncertainty than using one flexible 

parametric model

• The ultimate selection of priors for continuous models is still being 

researched for BMDS.  

• Priors are generally diffuse

• Are designed to prevent drastic (i.e., non-biologically plausible) on/off responses 
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Dichotomous Data - Cancer

Description

• Response is measured as on/off or true/false 
• You either have it or you don’t  
• BMDS can only model positive dose-response trends,
where incidence increases with dose

Example 
Endpoints

•Cancer: Tumor incidence

Model Inputs
• Dose
• Number of Subjects
• Incidence or Percent Affected

Model

• Multistage Cancer:  
• β coefficients always restricted to be positive
• Cancer slope factor calculated 
• Linear extrapolation shown on plot

•Form:  
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BMD Cancer Analysis
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1. Choose BMR(s) and dose metrics to 
evaluate; Fit all degrees of Multistage 
model (n-2 groups) and RUN models

2. Are all 
parameters 

positive (i.e., >0)?

4. Do models fit 
adequately?

No model fits:  
consult statistician

Document BMD analysis, including uncertainties, as outlined in reporting requirements

NO

For models with appropriate fit, 
use BMD and BMDL from model 

with lowest AIC

YES

3. Consider 1st and 2nd degree Multistage 
models only: judge fit statistics

Both fit:  if any parameter = 0, 
use model with lowest BMDL.  If 

not, using model with lowest AIC.

Only one fits:  use 
that model



Multiple Tumor Analysis

• Often, an individual cancer bioassay will report dose-related increases 

in multiple, independent tumor types 

• Basing unit risk estimates on only one tumor type may underestimate the 

carcinogenic potential of a chemical that is observed to induce neoplasia at multiple 

sites in a bioassay (NRC, 1994)

• MS-Combo model allows users to calculate the BMD and BMDL for 

any combination of tumors observed in a single bioassay.

• The major assumption of the MS-Combo model is that different 

tumor types are independent of one another

• Independence can be determined based on statistical or biological considerations

• Individual tumor types must first be modeled with the multistage 

model to determine which degree model best fits the data

• This allows individual tumors to be fit with models that best characterize their 

specific dose-response shapes
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Poly-3 Survival Adjustment

• The poly-3 survival adjustment is a method to calculate survival-

adjusted lifetime tumor rates by fractionally weighting the number of 

exposed animals (i.e., sample size)

• “Poly-3” refers specifically to using a 3rd order polynomial to describe the tumor 

incidence function in time

• Other polynomials can be used, but estimating the correct polynomial can be difficult

• Failure to adjust for differential mortality can bias modeling results

• For an individual dose group (i), the poly-3 survival adjusted sample 

size is:

𝑛𝑖
∗ =෍

𝑗=1

𝑛𝑖

𝑤𝑖𝑗

• Where, 𝑤𝑖𝑗 = 1 if the jth animal in the ith dose group had a tumor at observation 

(i.e., necropsy); otherwise, 𝑤𝑖𝑗 = 𝑡𝑖𝑗
3 , where 𝑡𝑖𝑗 is the fraction of duration of the study 

for which the animal survived
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Developmental Toxicity Data
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Data Description Examples Model Inputs

Dichotomous • Fetal response (on/off) reported for 
individual exposed dams 

• BMDS can only model positive dose-
response trends, where incidence 
increases with dose

• Malformations
• Fetal death

• Dose
• Number of fetuses at risk for each 

litter (i.e., individual litter level 
data required)

• Number of fetuses affected for 
each litter

Continuous • Response is measured on a 
continuous scale

• Response is a numerical value with a 
measure of variability 

• Response can either increase or 
decrease with dose

• Responses are measured for fetuses 
within individual litters

• Fetal body weight
• Fetal organ weight
• Pup weight gain 

PND 7-14

• Dose
• Number of Subjects (litters or 

fetuses)
• Mean response (mean of litter 

means; per dose group) OR
individual fetal responses

• A measure of variability in 
response (standard deviation or 
standard error; standard deviation 
automatically calculated when 
entering individual responses)



Modeling Developmental 
Toxicity Data
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• Must account for the litter effect; the propensity of litter-mates to 

respond more alike one another compared to offspring from different 

litters

• Failure to do so will underestimate the variances

• Meaning, dose-response modeling results will be biased

• For dichotomous data:

• Can use nested models in BMDS if individual dam (i.e., individual litter) data is 

available

• If only summary data (i.e., dose group level) data is available, can use Rao-Scott 

transformation and regular dichotomous models

• For continuous data:

• If individual fetal or litter data is available, correct variances are easy to calculate

• If only summary data is available, approximate methods are used to correct variances

• Regular continuous models used in both cases



Future Directions for BMDS

• Implementation of continuous Bayesian model averaging

• Approach will average over models, distributions, and variances

• Addresses the uncertainty with having to assume a particular distribution a priori

• Release of BMDS-HAWC

• Interoperable online version of BMDS

• Fully integrated into EPA’s HAWC online assessment database

• Release of BMDS-R

• “Research” version of BMDS

• Fully configurable

• Will facilitate further development of 3rd-party BMDS products

• Continued dose-response research

• Model priors

• Unified model suite for dichotomous and continuous data

• Nested continuous model for incorporating litter specific covariates
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