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Image was obtained from Wilhelm et al., 2016

Challenge in tumor delivery of nanomedicine
• The poor tumor delivery efficiency of nanomedicines has 

been a major barrier in the translation of nanomedicine to 

potent drug candidates.

• Lack of understanding of pharmacokinetic of nanomedicine 

might be a major reason.

• NPs are becoming an 

increasingly popular tool for 

biomedical imaging and 

drug delivery.

Image source: https://www.the-
scientist.com/cover-story/nanomedicine-37087

Abbreviations: Nanoparticles (NPs)
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• The pharmacokinetics of nanomedicine is very different with the traditional drugs. 

• One of important mechanisms to affect the NPs’ biodistribution is phagocytosis.

• Different physicochemical properties of NPs, such as size, materials, biochemistry, and shape, 

may relate to the NPs’ phagocytosis and biodistribution.

Kim et al., 2015; Hamad-Schifferli et al., 2015

Biodistribution of Nanoparticles (NPs)

Reticuloendothelial System (RES)
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Theoretical parameter: Endocytosis of NPs

Monteiro-Riviere et al. 2013. Toxicology Letters

Kmax,i: maximum uptake rate

K50,i: time reaching half maximum rate

ni: Hill coefficient 

• Hill function to simulate endocytosis of gold nanoparticles 

PCs represent phagocytic cells in organs or tumors; 
A_(Ti ) represents amount of NPs in the tissue interstitium of the organ;
Kre,i is the release rate constant of NMs by PCs 
Physiological based pharmacokinetic (PBPK) model

𝑑𝐴𝑇𝑖

𝑑𝑡
= −𝐾𝑢𝑝𝑖

× 𝐴𝑇𝑖
+ 𝐾𝑟𝑒,𝑖 × 𝐴𝑃𝐶𝑖 

• Simplified equation in PBPK model

𝐾𝑢𝑝,𝑖 𝑡 =
𝐾𝑚𝑎𝑥,𝑖 × 𝑡𝑛𝑖

𝑡50,𝑖
𝑛𝑖 + 𝑡𝑛𝑖

Chithrani et al. 2006. Nano Letters

Lin et al., 2016. Nanotoxicology 
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A hybrid method (AI-assisted PBPK model)

Chou WC, Chen Q, Yuan L, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice. J 

Control Release. 2023 Sep;361:53-63
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Variables in the Nano-Tumor Database

1. Categorical variables
    - Material: Inorganic/organic NPs →1/0

    - Shape: Spherical/Rod/circle → 1…3

    - Cancer type: Brain/Breast/…

    - Tumor model (TM)

    - Targeting strategy (TS): Active/Passive →1/0 

2. Numerical variables
    - Hydrodynamic diameter [nm]

    - Zeta potential [mV]

3. Target variables
    - Critical Kinetic parameters related to 

phagocytosis Image by Tumisu from Pixabay



1. To avoid overfitting, we constrained the model architecture to 3 layers, which of the layers contain 

lower than 512 nodes

2. Shuffled 5-fold cross-validation was used to test the generalization of the model.

3. Bayesian optimization was used to tune the hyper-parameters of the models.

Development of AI-QSAR model

• KTRES_50

: Time 

reaching 

half 

maximum 

rate in 

tumor

• KTRES_m

ax: 

Maximum 

uptake rate 

of NPs in 

tumor

• KTRES_n: 

Hill 

coefficient

• KTRES_n: 

: Release 

rate of NPs 

in tumors 
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Physiological based pharmacokinetic (PBPK) 

model for tumor-bearing mice

PBPK model for tumor-bearing mice

Model fitting with animal studies

Nano Tumor Database: (376 datasets 

from 200 studies)

Obtain optimized model 

parameters

Finalized PBPK model

PCs represent phagocytic cells in organs or tumors; 

Chou WC, Chen Q, Yuan L, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. An artificial intelligence-assisted physiologically-based pharmacokinetic model to 

predict nanoparticle delivery to tumors in mice. J Control Release. 2023 Sep;361:53-63
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Similarity between predicted and data-driven parameters

Data-driven values: 9.5 (95% CI: 0.01-118)

Predicted values: 13.4 (95% CI: 0.83-80.3)

Adj-R2 = 0.70 

Data-driven values: 0.31(95% CI: 0.01-11.6)

Predicted values: 0.47 (95% CI: 0.24-13)

Adj-R2 = 0.87  

Data-driven values: 2 (95% CI: 0.05-8)

Predicted values: 1.8 (95% CI: 0.37-7.42)

Adj-R2 = 0. 85 

Data-driven values: 0.1 (95% CI: 0.001-7.76)

Predicted values: 0.18 (95% CI: 0.001-6.16)

Adj-R2 = 0.81 

Predicted parameters

Data-driven parameters

KTRES_50: Time reaching half maximum rate in tumor KTRES_max: Maximum uptake 

rate of NPs in tumor

KTRES_n: Hill coefficient KTRES_n: : Release rate of NPs in tumors 



Adj-R2: 0.83

%2e: 69.7

%3e: 91.6
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Evaluation results of AI-PBPK model-predicted tumor 
delivery efficiency

Abbreviation: DE, delivery efficiency; DE24, delivery efficiency at 24 hours; 

DE168, delivery efficiency at 168 hours; Demax, maximum of DE;

%2e, percentage of 2-fold error range

%3e, percentage of 3-fold error range 12



Observed NPs in tumor(%ID/g)
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N: 1354

Adj-R2: 0.67

RMSE: 14.7

%2e: 67

%3e: 85

Evaluation results of AI-PBPK model-predicted time-dependent 

distribution of nanoparticles (NPs) to tumors
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Representative evaluation results of AI-PBPK model
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Summary

• This study demonstrated the feasibility of an integration of machine 

learning/AI technologies with a mechanistic PBPK model to predict 

the tumor delivery efficiency of NPs. 

• Our AI-assisted PBPK model not only provides an early screening 

tool for estimating tumor delivery efficiency of NPs, but also can 

reduce the number of animals use at the early-stage preclinical 

trials to identify NPs with desired delivery efficiency to tumor.
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Hypothesis

• Drug-induced organ toxicity presents a significant hurdle in drug 
discovery, potentially impacting multiple organs.

• Existing quantitative structure-activity relationship (QSAR) 
models predict single toxicity types and overlook systemic 
toxicity, affecting multiple organs simultaneously.

• Our hypothesis suggests that the multitask-learning QSAR 
model can overcome the constraints of traditional QSAR models 
by predicting toxicity across multiple organs.
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A schematic of the multi-task QSAR model for the 

prediction of multi-organ toxicity. 

Chou, et al., unpublished results from the Lin Lab at UF. 



19

A. In vitro assays and structure data
❖ The in vitro dataset was collected from Tox21 quantitative high-throughput screening 

(qHTS) data via the National Center for Advancing Translational Sciences (NCTS) 

website: https://tripod.nih.gov/tox21/assays/  

❖ In this study, we used 72 assays by filtering out the  “Chinese hamster ovary cell lines” 

and other “non-human” originated cell lines.

❖ The 1024-bit ECFP4 fingerprints were generated using the Python package “RDKit”.

B. Human organ level toxicity data
❖ Human in vivo toxicity data in this study were collected from the studies Xu et al. (2021) 

and Hu et al., 2022. A total of 2,389 chemicals were collected from the database.

❖ Six endpoints were chosen which represent different organ-level adverse outcomes, 

including cardiotoxicity, developmental toxicity, hepatotoxicity, nephrotoxicity, 

neurotoxicity, and reproductive toxicity. 

Materials and Methods

https://tripod.nih.gov/tox21/assays/
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Density plot of the multi-task QSAR model

Chou, et al., unpublished results from the Lin Lab at UF. 

Cardiotoxicity Developmental 

toxicity
Hepatotoxicity

Reproductive 

toxicity

NeurotoxicityNephrotoxicity



A B C

D E F

ROC curve of cardiotoxicity 
class (area = 0.85) 

ROC curve of 
developmental toxicity 
class (area = 0.85) 

ROC curve of hepatoxicity 
class (area = 0.83) 

ROC curve of nephrotoxicity class 
(area = 0.82) 

ROC curve of neurotoxicity 
class (area = 0.86) 

ROC curve of reproductive 
toxicity class (area = 0.85) 

21Chou, et al., unpublished results from the Lin Lab at UF. 

Receiver operating characteristic curve (ROC) plot of the 

multi-task QSAR model
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ROC-AUC BA Precision Recall F1-Score

Cardiotoxicity 0.89 0.82 0.81 0.84 0.82

Developmental toxicity 0.90 0.84 0.83 0.82 0.83

Hepatoxicity 0.88 0.80 0.78 0.78 0.78

Nephrotoxicity 0.87 0.80 0.77 0.79 0.78

Neurotoxicity 0.88 0.82 0.86 0.87 0.87

Reproductive toxicity 0.89 0.82 0.74 0.80 0.76

Micro_Average 0.88 0.82 0.80 0.82 0.81

Note: Micro-averaging values computed a global average ROC-AUC, Balanced accuracy (BA), Precision Recall and F1 score by 

counting the sums of the True Positives (TP), False Negatives (FN), and False Positives (FP) for each of endpoints

Predictability of multi-task QSAR model for 

each toxicity endpoint

Chou, et al., unpublished results from the Lin Lab at UF. 
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Summary of feature importance by using Extended-Connectivity 

Fingerprints (ECFPs) chemical descriptors and Tox21 assays

Tox21 assays related to organ toxicity:

• tox21-ache-p5_ache-inhibitor_1

• tox21-ap1-agonist-p1_ap1-agonist_1

• tox21-err-p1_err-antagonist_1

• tox21-herg-u2os-p1_herg-blocker_1

• tox21-ks-are-p1_nrf2-agonist_1

• tox21-p450-2c19-p1_2c19-inhibitor_1

• tox21-p450-2c9-p1_2c9-inhibitor_1

• tox21-p450-3a4-p1_3a4-inhibitor_1

• tox21-pgc-err-p1_pgc-err-antagonist_1

• tox21-pxr-p1_pxr-agonist_1

• tox21-shh-3t3-gli3-antagonist-p1_shh-

antagonist_1

Chou, et al., unpublished results from the Lin Lab at UF. 
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