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Case studies

A. Development of Artificial Intelligence (Al)-Assisted
PBPK Model in Cancer Nanomedicine



Challenge in tumor delivery of nanomedicine

« The poor tumor delivery efficiency of nanomedicines has
been a major barrier in the translation of nanomedicine to
potent drug candidates.

 NPs are becoming an

Lack of understanding of pharmacokinetic of nanomedicine

increasingly popular tool for Year m|ght be a major reason.
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Abbreviations: Nanoparticles (NPs)



Biodistribution of Nanoparticles (NPs)
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« The pharmacokinetics of nanomedicine is very different with the traditional drugs.

* One of important mechanisms to affect the NPs’ biodistribution is phagocytosis.

 Different physicochemical properties of NPs, such as size, materials, biochemistry, and shape,
may relate to the NPs’ phagocytosis and biodistribution.

Kim et al., 2015; Hamad-Schifferli et al., 2015



Theoretical parameter: Endocytosis of NPs

Monteiro-Riviere et al. 2013. Toxicology Letters

Modeling

Kmax,i Xt

n; Nn:
Lop; T

Kmaxi- Maximum uptake rate

Ksq i time reaching half maximum rate

n;: Hill coefficient
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 Hill function to simulate endocytosis of gold nanoparticles

Time (hr)

Chithrani et al. 2006. Nano Letters

« Simplified equation in PBPK model

Blood flow == -

Tissue intersti;-

PCs represent phagocytic cells in organs or tumors;

A_(Ti) represents amount of NPs in the tissue interstitium of the organ;
Kre,i is the release rate constant of NMs by PCs

Physiological based pharmacokinetic (PBPK) model

> dAr,
dt

Lin et al., 2016. Nanotoxicology

= —Kyp; X A, + Kyei X Apg,



A hybrid method (Al-assisted PBPK model)
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NPs and its tumor delivery efficiency

Chou WC, Chen Q, Yuan L, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice. J
Control Release. 2023 Sep;361:53-63



Variables in the Nano-Tumor Database

1. Categorical variables
- Material: Inorganic/organic NPs =1/0
- Shape: Spherical/Rod/circle = 1...3
- Cancer type: Brain/Breast/...
- Tumor model (TM)
- Targeting strategy (TS): Active/Passive -1/0

2. Numerical variables
- Hydrodynamic diameter [nm]
- Zeta potential [mV]

3. Target variables
- Critical Kinetic parameters related to
phagocytosis Image by Tumisu from Pixabay
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Development of AI-QSAR model
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1. To avoid overfitting, we constrained the model architecture to 3 layers, which of the layers contain

lower than 512 nodes
Shuffled 5-fold cross-validation was used to test the generalization of the model.
3. Bayesian optimization was used to tune the hyper-parameters of the models.
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PBPK model for tumor-bearing mice

Physiological based pharmacokinetic (PBPK)

model for tumor-bearing mice Model fitting with animal studies

Nano Tumor Database: (376 datasets
from 200 studies)
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Chou WC, Chen Q, Yuan L, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. An artificial intelligence-assisted physiologically-based pharmacokinetic model to 10
predict nanoparticle delivery to tumors in mice. J Control Release. 2023 Sep;361:53-63



Density
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Evaluation results of AI-PBPK model-predicted tumor

delivery efficiency
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Representative evaluation results of AI-PBPK model

NPs concentration in tumor (%ID/g)
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* This study demonstrated the feasibility of an integration of machine
learning/Al technologies with a mechanistic PBPK model to predict

the tumor delivery efficiency of NPs.

* Our Al-assisted PBPK model not only provides an early screening
tool for estimating tumor delivery efficiency of NPs, but also can
reduce the number of animals use at the early-stage preclinical
trials to identify NPs with desired delivery efficiency to tumor.



Case studies

B. Development of a Multi-Organ Toxicity Predictive
Model Using Multi-Task Learning in Deep Neural
Network



* Drug-induced organ toxicity presents a significant hurdle in drug
discovery, potentially impacting multiple organs.

« EXIsting quantitative structure-activity relationship (QSAR)
models predict single toxicity types and overlook systemic
toxicity, affecting multiple organs simultaneously.

* Our hypothesis suggests that the multitask-learning QSAR
model can overcome the constraints of traditional QSAR models
by predicting toxicity across multiple organs.



A schematic of the multi-task QSAR model for the
prediction of multi-organ toxicity.
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Chou, et al., unpublished results from the Lin Lab at UF. -



A. In vitro assays and structure data
* The In vitro dataset was collected from Tox21 gquantitative high-throughput screening
(gHTS) data via the National Center for Advancing Translational Sciences (NCTS)
website: https://tripod.nih.gov/tox21/assays/
¢ In this study, we used 72 assays by filtering out the “Chinese hamster ovary cell lines”
and other “non-human” originated cell lines.
¢ The 1024-bit ECFP4 fingerprints were generated using the Python package “RDKit”.

B. Human organ level toxicity data
s Human in vivo toxicity data in this study were collected from the studies Xu et al. (2021)
and Hu et al., 2022. A total of 2,389 chemicals were collected from the database.
% Six endpoints were chosen which represent different organ-level adverse outcomes,
Including cardiotoxicity, developmental toxicity, hepatotoxicity, nephrotoxicity,
neurotoxicity, and reproductive toxicity.


https://tripod.nih.gov/tox21/assays/

Density plot of the multi-task QSAR model
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Receilver operating characteristic curve (ROC) plot of the
multi-task QSAR model
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Predictability of multi-task QSAR model for
each toxicity endpoint

Cardiotoxicity 0.89 0.82 0.81 0.84 0.82
Developmental toxicity 0.90 0.84 0.83 0.82 0.83
Hepatoxicity 0.88 0.80 0.78 0.78 0.78
Nephrotoxicity 0.87 0.80 0.77 0.79 0.78
Neurotoxicity 0.88 0.82 0.86 0.87 0.87
Reproductive toxicity  0.89 0.82 0.74 0.80 0.76
Micro_Average 0.88 0.82 0.80 0.82 0.81

Note: Micro-averaging values computed a global average ROC-AUC, Balanced accuracy (BA), Precision Recall and F1 score by
counting the sums of the True Positives (TP), False Negatives (FN), and False Positives (FP) for each of endpoints

Chou, et al., unpublished results from the Lin Lab at UF. ”



Summary of feature importance by using Extended-Connectivity
Fingerprints (ECFPs) chemical descriptors and Tox21 assays

| | |
Tox21 assays related to organ toxicity: ﬁ m #ﬁ ﬁ_ﬂ
» tox21-ache-p5 ache-inhibitor 1 IIII I I

» tox21-apl-agonist-pl apl-agonist 1

* tox21-err-pl_err-antagonist 1

» tox21-herg-u20s-pl_herg-blocker 1

» tox21-ks-are-pl nrf2-agonist_1

* tox21-p450-2c19-p1l 2c19-inhibitor 1

» tox21-p450-2c9-pl_2c9-inhibitor_1

» tox21-p450-3a4-pl_3ad-inhibitor_1

« tox21-pgc-err-pl_pgc-err-antagonist_1

* tox21-pxr-pl_pxr-agonist 1

* tox21-shh-3t3-gli3-antagonist-p1l_shh-
antagonist_1

tox21-ks-are-pl 1
tox21-p450-1a2-pl_1,
tox21-err-pl_err-
t0x21-p450-2c19-pl_2c
t0x21-p450-3a4-pl_3ad-inhibito

tox21-pgc-err-pl_pgc-err-ani

tox21-herg-uZos-pl_he

Chou, et al., unpublished results from the Lin Lab at UF. ”
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