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@g In a nutshell ...

 New Approach Methods (NAMs) refers to 215-C testing strategies that rely on in vitro
data and in silico models to predict human toxicity with less reliance on animal testing.

 Complex NAMs that accurately predict the potential for human developmental toxicity
are needed to succeed or supersede conventional testing in pregnant animals.

* Most in vitro assays lack the positional information, physical constraints, and regional
organization of a multicellular system undergoing morphogenesis and development.

 Embryo-inspired computational (in silico) models with emergent, self-organizing capacity
can simulate critical phase transitions during developmental processes and toxicities.

* Will avirtual tissue model of physical trajectory hold up to the mechanistic veracity
needed to reliably predict toxicological outcome(s) in a complex system?



Developmental toxicity: assessing chemical risks to the embryo

TIMELINE OF THE

period, your baby's body structure and

organ systems develop.”
www.ucsfhealth.org

HUMAN Week 8

“The first trimester is the most crucial to EMBRYONIC PERIOD Week 4 (Carnegie Stage 20)
your baby’s development. During this Week ‘

(Carnegie Stage 8)

(Carnegie Stage 13)

peak sensitivity (37 — 8t wk)

Embryonic Period Fetal Period
T1 T2 T3
‘ | Adverse Birth Outcomes
OECD TG 414

- preterm birth rate (10%)
> - low birth weight babies (11% )

PN - malformations (3-4% live births)
@N{):o - mortality (0.4-0.6% newborns)
(0]

- functional deficits (17% children)

OPPTS 870.3700

Complex Systems
- gene networks
- multiscale
- autopoiesis
canalization
temporality
state trajectories
and more ...
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Pluripotent stem cell (PSC) assays

An active area of investigation and one of the most promising in vitro alternatives to
pregnant animal testing for assessing developmental hazard potential; novel features:

"
-

» Self-renewal: cells replicate themselves indefinitely when cultured under
appropriate growth factor conditions.

* Pluripotency: cells have the potential to form most of the different cell
types comprising the embryo-fetus.

* Autopoiesis: capacity to self-organize into rudimentary tissues and more
complex organoid structures.

Established hPSC lines can recapitulate some of the biology driving embryogenesis during
the period covered by guideline prenatal studies (e.g., OECD TG 414, OPPTS 870.3700).




Translatability of PSC findings: 7oxcast PSC assay vs ToxRefDB fetal outcomes
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* Predictivity of hPSC and mPSC assays in ToxCast varies as a function of WoE for
adverse fetal outcomes (n=432 chemicals with in vivo studies).

* Both platforms showed strong predictivity for well-curated developmental
toxicants and non-toxicants, despite limited sensitivity (BAC 83.3% at its peak).

* Positive predictive value (PPV) is generally strong, meaning a positive PSC
response is indicative of developmental hazard potential.

» Specificity is high although negative predictive value (NPV) drops when fetal
effects are concurrent with maternal toxicity (BAC 50.8% at its worst).

https://comptox.epa.gov/dashboard 5




Bringing the embryo into focus

B! ".

Epiblast (human)

Kyoto collection

* Molecular biology and behavior of PSCs in vitro most closely resemble the naive pluripotent state of
the epiblast as the bilayered embryo enters gastrulation (primitive streak PS is a hallmark feature).

* Cultured PSCs can self-organize into rudimentary organs but lack positional information and physical
constraints of an epiblast critical for ‘decoding the genomic blueprint of the fetal body plan’.



Gastruloid: microsystem enabling self-organization of the body plan in vitro

v

PSC-derived ‘gastruloid’ can establish
anterior-posterior body axis de novo.

Engineering physical
boundaries in vitro.
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anterior = posterior specification
(head-to-tail)

Posterior address

T

Hoxd13 - : Hoxd4

Anterior address

Think of it as a Hox-clock,
where time is measured by
progressive activation of
homeobox (Hox) genes.

Epiblast cells stream to
PS and undergo EMT.

Time set as cells pass
through PS; hence,
position is key.



Flow of molecular regulatory information
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Computational logic of a self-organizing system

Anatomical homeostasis in a
self-regulating ‘Virtual Embryo’

 Embryo-inspired Agent-Based Model (SBM) of natural
processes such as self-regulation and emergence.
 Computational intelligence (Cl) evolves within the physical

model by different phenotype-based protocols:
- mathematical (phenotype-based algorithmic selection);
- biological (fuzzy logic to fill in for incomplete information).

Step: 598
Spheres: 273
Cells: 21

Copyright (c) 2003-2007, Crowley Davis Research, Inc. Aill.R‘i;hts Reserved. ® EX p I O ri n g m e C h a n i St i C Ca u Sat i O n W it h a rt ifi Ci a I I ife t h ro u g h

automation, synthetic control, and computer simulation.

SOURCE: Andersen, Newman and Otter
(2006) Am. Assoc. Artif. Intel.



Cellular Agent-Based Model (ABM)

Nature-inspired agents (cells) and rules (behaviors) set into motion as a self-organizing
virtual system, using an open-source modeling environment (CompuCell3d.org).

Soft-computing uses ‘fuzzy logic’ to simulate forces or properties governing cell activity
where rules are inexact or knowledge incomplete (computational intelligence).

Change course in response to a particular situation or stimulus, such as genetic errors or
biomolecular lesions fed into the model from real world data (sensitivity analysis).

Probabilistic rendering of where, when and how a particular condition might lead to an
adverse developmental outcome (cybermorphs).

End-game: run countless perturbation scenarios and/or uncover critical phenomenon
explaining an altered phenotype (perturbation matrices).
10



Workflow: computational ABM reconstructing stem cell dynamics

BioTapestry
Problem formulation: Literature mining to Control network in -

=

model gastrulation extract information BioTapestry.org

epiblast prototype type, gradients, ...) framework

f Render synthetic R Input parameters (cell ' CompucCell3d.org

Execute multi-scale — Analyze output l Sensitivity analysis
simulations parameters (genetic perturbation) )
Quantitative prediction : Operationalize ' Validate model outputs

of chemical effects (chemical stressors) (cybermorphs)

Kaitlyn Barham and Richard Spencer, manuscript in preparation 11



Gastruloid in silico: reconstructing the morphological programming logic in silico

 ESABM generates axial (chordomesoderm), paraxial (somitic), lateral
(limbs, external genitalia), and posterior (caudal, blood) mesoderm.
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Hox clock regional specification

* Rate of the Hox clock is controlled by CDX genes that regulate AP
identity based on local signaling (ATRA, WNT, FGF).

* ESABM can ‘recode the genomic blueprint of the fetal body plan’ for
evaluating chemical effects on regional specification of mesoderm.

J FGF signaling slows the clock

K Barham, R Spencer (work in progress) 12



Hacking the model: FGF4 cybermorphs
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* FGF4 is a positive determinant of CDX-dependent regulation of the HOX clock;
* progressive activation of CDX specifies more posterior mesodermal cell fates;
* FGF4 knockdown in the model had a critical effect on posterior mesoderm formation (*);

* 50% FGF4-cybermorph recapitulates functional inactivation of Cdx2/4 in mice.
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Hacking the model: BMP4 cybermorphs
-
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Normal somites

* BMP4 is maintained by FGF4 and primes posterior fate of the mesoderm;

* BMP4 in the epiblast regulates recruitment of prospective paraxial mesoderm;

* Conditional Bmprla-knockdown anteriorizes mesoderm, expanding the paraxial field;

* 50% BMP4-cybermorph recapitulates functional deficit in Bmprla-deficient mice.

Bmprla-deficient

after Miura et al.
(2006), Development
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ToxCast/Tox21 bioactivity nodes
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Toward a Virtual Embryo

Epiblast NVU/BBB
1 . . .
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Somites Vasculature Morphogenetic Fusion
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Hester et al. (2011)
PLoS Comp Biol Naphade et al. (2023), submitted Berkhout et al. (2023), work in progress




Morphing NAMs data across levels of biological organization

Early limb development
(~4-weeks gestation)

Control system: biological network

Cell agent-based model (compucell3d.org)

Hacking the model
(cybermorphs)

normal Shh-null

phocomelia

N,
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Galli et al. (2010) PLg Gen




Morphing NAMs data across levels of biological organization

Bioactivity (ToxCast/Tox21) Control system: biological network ATRA overload

* Data on over 1400 HTS assays
 Literature mining (AbstractSifter)
* Machine learning (Classifiers)

12h
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Chemicals  In vitro biactivity  Literature
(n=117) (k=8 assays) (k=8 assays)

117 chemicals
active on MIEs
in the ATRA
pathway and
invoke skeletal
embryopathies.
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Simulating an ATRA
overload in silico:
‘cybermorph’
foreshadows distal
deficiencies.




Toward a Virtual Cornea:

An Agent-Based Model to Study Interactions between the Cells and Layers of the Cornea under Homeostasis
and following Chemical Exposure

.
¥ agenct

Joel Vanin!, James A. Glazier!, Thomas B. Knudsen2? & Catherine Mahony?

1Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Bloomington, IN;
2Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC;
SOT 2023 3Procter & Gamble, Technical Centre, Reading, United Kingdom.

,.
Oy,

-—. Slight Injury o

o . 0.589
Eﬁ%”‘*“%ﬁllﬁ#ﬁ"ﬂ‘ﬂﬁ'%‘ v

. Homeostasis NO Injury
Eﬁ;;_:*mriﬂl%ﬁl‘hgyibﬂiﬂﬁlﬁi

0.471
0.353

0.235

0.118

0.00

25.0

Cell Heritage

17.9 Mild |njury

i et
S

14.3
10.7
7.14
3.57

0.00
0.824

0.589

Moderate Injury

0471 .

0.353 B i L e

0.235 _A _ “

Done. = e

0.118

0.00




Summary

* In silico reconstitution of a self-organizing embryo from unidimensional data (eg,
embryogeny) remains a challenge.

* Virtual tissue models are a novel approach to: (i) visualize cellular trajectories; (ii) map
toxicodynamics; and (iii) predict adverse phenotype (cybermorphs).

A fully computable virtual embryo (synbryo) may be a distant goal, but modular systems
that bring toxicodynamics to life can pinpoint critical phenomena.

* Such models would allow a user to simulate limitless ‘what-if’ scenarios quantitatively,
similar to computer models used for engineering complex physical systems.
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