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NAMs Landscape: Key Directives



In Vitro Toxicity Testing Services: Market Trends



NAMs Landscape: Tool Development

https://ntp.niehs.nih.gov/whatwestudy/niceatm/test-
method-evaluations/skin-sens/da/dass-app



Major cheminformatics approaches to toxicity 
prediction: Structural alerts vs. Machine 
Learning (QSAR) methods

V. M. Alves et al., Green Chem. 2016, 18 (16), 4348–4360.



Read-across: Structural Alerts

*Image and definition from Sushko et al, J Chem Inf Model. 2012 Aug 27; 52(8): 2310–2316.

Structural alerts are “molecular patterns that are associated 
with particular types of toxicity or ADRs either directly or after 
undergoing of a metabolic activation in vivo”*



Alarms about Alerts: Many alerts cannot 
distinguish withdrawn vs. marketed drugs 

Drug Name State QSAR 
prediction2* 

Toxic hazard 
classification 
by Cramer 
(extension) 

Toxic 
hazard 

classification 
by Cramer 
(original) 

Carcinogenicity 
(genotox and 
nongenotox) 
alerts by ISS 

DNA alerts 
for AMES, 

MN and CA 
by OASIS 

v.1.3 

In vitro 
mutagenicity 
(Ames test) 

alerts by ISS 

In vivo 
mutagenicity 

(Micronucleus) 
alerts by ISS 

Protein binding 
alerts for 

Chromosomal 
aberration by 
OASIS v1.1 

Protein binding 
alerts for skin 

sensitization by 
OASIS v1.3 

Amineptine withdrawn unsafe High (Class III) High (Class III) No alert found No alert found No alert  Alerts No alert found No alert found 

Duract withdrawn unsafe High (Class III) High (Class III) No alert found No alert found No alert  Alerts No alert found No alert found 

Vioxx withdrawn unsafe High (Class III) High (Class III) No alert found No alert found No alert  Alerts No alert found Alerts 

Astemizole withdrawn unsafe High (Class III) High (Class III) Alerts No alert found No alert  Alerts No alert found No alert found 

Cerivastatin withdrawn unsafe High (Class III) High (Class III) No alert found No alert found No alert  Alerts No alert found No alert found 

Chlormezanone withdrawn unsafe High (Class III) High (Class III) Alerts No alert found No alert  Alerts No alert found No alert found 

Fenfluramine withdrawn unsafe High (Class III) High (Class III) No alert found No alert found No alert  No alert  No alert found No alert found 

Flosequinan withdrawn unsafe High (Class III) High (Class III) Alerts No alert found Alerts Alerts Alerts Alerts 

Glafenine withdrawn unsafe High (Class III) High (Class III) Alerts No alert found No alert  Alerts No alert found No alert found 

Grepafloxacin withdrawn unsafe High (Class III) High (Class III) Alerts No alert found No alert  Alerts Alerts No alert found 

Mibefradil withdrawn unsafe High (Class III) High (Class III) Alerts No alert found No alert  Alerts No alert found No alert found 

Troglitazone withdrawn unsafe High (Class III) High (Class III) No alert found No alert found No alert  Alerts No alert found No alert found 

Ximelagatran withdrawn unsafe High (Class III) High (Class III) No alert found Alerts No alert  Alerts No alert found No alert found 

Aspirin marketed safe Low (Class I) Low (Class I) No alert found No alert found No alert  Alerts No alert found Alerts 

Ibuprofen marketed safe Low (Class I) Low (Class I) No alert found No alert found No alert  Alerts No alert found No alert found 

Valtrex marketed safe High (Class III) High (Class III) No alert found No alert found No alert  Alerts No alert found Alerts 

Microzide marketed safe High (Class III) High (Class III) Alerts No alert found No alert  Alerts No alert found No alert found 

Neurontin marketed safe High (Class III) High (Class III) No alert found No alert found No alert  Alerts No alert found No alert found 

Enoxaparin marketed safe High (Class III) High (Class III) No alert found No alert found No alert  Alerts No alert found No alert found 

Lyrica marketed safe Low (Class I) Low (Class I) No alert found No alert found No alert  Alerts No alert found No alert found 

 *Zakharov, Lagunin, Poroikov. Chem. Res. Toxicol., 2012, 25, 2378–2385.



Criticism of chemical toxicity alerts

ACS Sustainable Chem. Eng. 2018, 6, 3, 2845–2859



Chemical Alerts of Toxicity: what are they for, 
really?



~106 – 109

molecules

VIRTUAL 
SCREENING

CHEMICAL
STRUCTURES

CHEMICAL
DESCRIPTORS

Toxicity testing
data

PREDICTIVE
QSAR MODELS

Predicted toxic

QSAR
MAGIC

Predicted 
non-toxic

CHEMICAL DATABASE

QSAR-based toxicity prediction



To facilitate the consideration of a QSAR model for regulatory purposes, 
it should be associated with the following information:

1) a defined endpoint
2) an unambiguous algorithm
3) a defined domain of applicability
4) appropriate measures of goodness-of-fit, robustness and 
predictivity (R2>0.8; Q2>0.6; Q2

ext>0.6)*
5) a mechanistic interpretation, if possible

* Model acceptance criteria used in our QSAR studies

OECD principles of model validation

OECD = Organization of Economic Co-operation and Development
http://www.oecd.org/dataoecd/33/37/37849783.pdf



Our key principles of developing and 
using QSAR models as NAMs

• Data transparency and thorough curation
• Comprehensive model development and internal validation 

workflow
• Rigorous external validation
• Applicability domain and prediction confidence
• Mechanistic interpretation 

– Chemical functional group
– Associated toxicity pathways



ECHA (OECD Test Guideline No. 406) + Literature; 1639 records

1238 compounds

Comprehensive data curation pipeline

Fourches, D., Muratov, E. & Tropsha, A. Curation of chemogenomics data. Nat Chem Biol 11, 535 (2015). 
https://doi.org/10.1038/nchembio.1881



In vivo toxicity 
prediction

Chemical    substances

Data collection and curation

Public toxicity data Structural data

Accessible models

Chemical 
descriptors

Biological 
descriptors

Combi-QSAR 
modeling

Data Continuum/Modeling workflow



Applicability domain of QSAR models

For each test compound i, the distance Di is 
calculated as the average of the distances between 
i and its k nearest neighbors in the training set. 

= NEW COMPOUND

Descriptor 1

Descriptor 2

TRAINING SET

For a given model, two parameters are calculated:
- <Dk> : average euclidian distance between each 
compound of the training set and its k nearest 
neighbors in the descriptors space;
- sk : standard deviation of the distances between 
each compound of the training set and its k nearest 
neighbors in the descriptors space.

OUTSIDE THE DOMAIN

Will not be predicted
by the model Di ≤ <Dk> + Z × sk

with Z, an empirical parameter (0.5 by default)

The new compound will be predicted by
the model, only if :

INSIDE THE DOMAIN

Will be predicted
by the model



The “six-pack” battery of acute toxicity tests
Acute oral

(rat)
OECD TG 401, 420, 423, and 

425

Acute inhalation
(rat)

OECD TG 403, and 436

Acute dermal
(rat)

OECD TG 402

Skin irritation
(rabbit)
OECD TG 404

Skin Sensitization
(mouse, guinea pig)

OECD TG 406, 429 and 
442D

Ocular irritation
(rabbit)
OECD TG 405



STopTox - web-based predictor of 
Systemic and Topical Toxicity

• The largest curated “6-pack” dataset in 
public domain

• Models developed and validated in 
compliance with OECD guidelines

• Comprehensive computational platform 
that can be used as an alternative to 6-pack 
regulatory animal assays (current cost ca. 
10K/compound/assay). 

• Implemented as Web Portal, 
   http://stoptox.mml.unc.edu  
• Commercial version available from 

Predictive, LLC

http://stoptox.mml.unc.edu/


General workflow for STopTox



Datasets for endpoints to develop STopTox

Endpoint Assay type # Chemicals 
before/after curation

Skin Sensitization

LLNA,
 DPRA, 

KeratinoSens,
h-CLAT, 

human data

11,648 / 1,000
194 / 194
190 / 190
160 / 160
302 / 138

Skin irritation/corrosion Draize test 5,274 / 1012
Eye irritation/corrosion Draize test 6,387 / 3,547
Acute dermal Acute dermal toxicity test 29,824 / 2,622
Acute inhalation Acute inhalation toxicity test 8,176 / 681
Acute oral Acute oral toxicity test 8,994 / 8,795



Data Curation



Cross-endpoint analysis of accessible data



QSAR model development and validation 
workflow

Tropsha, A. Mol. Inform. 2010, 29, 476–488.

1

2
3

4
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5

Descriptor
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interest

Curation



Statistical characteristics of QSAR models



Consensus modeling with Bayesian approach

Alves, V. M. et al. ACS Sustain. Chem. Eng. 2018, 6 (3), 2845–2859.



Bayesian model for skin sensitization 
shows the highest prediction accuracy

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Human LLNA DPRA KeratinoSens h-CLAT Bayesian model

CCR Sensitivity PPV Specificity NPV

Alves, V. M. et al. ACS Sustain. Chem. Eng. 2018, 6 (3), 2845–2859.



External validation accuracy of STopTox prediction 
(OECD DASS-me-too program)

External set of 40 chemicals; apparent accuracy of 97.5% (39/40)

BUT: The answer is known for 36 
chemicals

(they are already in the training set)!

Real External set of 4 chemicals; accuracy of 75% (3/4)



STopTox paper



Pilot STopTox Web-App: https://stoptox.mml.unc.edu/

Commercial version: please visit https://www.predictive-llc.com/



Predictor of Sensitization for Medical 
Devices (PreS/MD): Study design

Borba, J. et al. PreS/MD: Predictor of Sensitization Hazard for Chemical Substances Released From Medical Devices, Toxicological Sciences, Volume 189, Issue 2, 
October 2022, Pages 250–259, https://doi.org/10.1093/toxsci/kfac078

https://doi.org/10.1093/toxsci/kfac078


Relevance of GPMT assay: comparison with 
human patch assay data for skin sensitization
 

Alves et al., ACS Sustainable Chem. Eng. 2018, 6, 3, 2845–2859



Model accuracy

Borba, J. et al. PreS/MD: Predictor of Sensitization Hazard for Chemical Substances Released From Medical Devices, Toxicological Sciences, Volume 189, Issue 2, 
October 2022, Pages 250–259, https://doi.org/10.1093/toxsci/kfac078

https://doi.org/10.1093/toxsci/kfac078


Ingredient GPMT PreS/MD
Abietic Acid Sensitizer Sensitizer
Ethanol Sensitizer Non-sensitizer
Eugenol Sensitizer Sensitizer
Geraniol Non-sensitizer Non-sensitizer
Methylparaben Non-sensitizer Non-sensitizer
Sulfanilic Acid Sensitizer Sensitizer
1,2-Dibromo-2,4-dicyanobutane Non-sensitizer Sensitizer
2-Methyl-3(2H)-isothiazolone Sensitizer Sensitizer
4,5-Dichloro-2-methyl-4-isothiazolin-3-one Non-sensitizer Sensitizer

Experimental results and predictions 
for external set compounds

Borba, J. et al. PreS/MD: Predictor of Sensitization Hazard for Chemical Substances Released From Medical Devices, Toxicological Sciences, Volume 189, Issue 2, 
October 2022, Pages 250–259, https://doi.org/10.1093/toxsci/kfac078

https://doi.org/10.1093/toxsci/kfac078


 

Table 1. Computational Software covering skin sensitization, irritation, and cytotoxicity endpoints. 

Software  
Endpoint Computational Approach Version 

Skin 
Sensitization Irritation Cytotoxicity QSAR Structural 

Alerts 
Read-

Across Bayesian Free 
(Web) Proprietary 

PredTox/MD ü ü ü ü X ü ü ü ü 
TIMES-SS ü ü X ü ü X X X ü 
TOPKAT ü ü X ü X X X ü ü 
ACD/ Percepta ü ü X ü X X X X ü 
CASE Ultra ü ü X ü ü X X X ü 
DEREK 
NEXUS ü ü X X ü X X X ü 
REACHAcross 
(RASAR) ü ü X ü X ü X X ü 
Danish QSAR 
database ü ü X ü ü X X ü X 

ToxTree ü ü X X ü X X ü X 
OECD QSAR 
Toolbox ü ü ü ü X ü X ü X 
VEGA ü X X X X ü X ü X 
Pred-Skin ü X X ü X X ü ü X 

 

Planned enhancements of PreS/md à 
PredTox/MD



“Best Published Paper Advancing the Science of Risk 
Assessment Award” at the 2023 Society of 
Toxicology (SOT) annual meeting.



Commercial version: please visit https://www.predictive-llc.com/

Pilot PRES/MD WEB-app: 
https://pressmd.mml.unc.edu/



pLD50 = 5.31

pLD50 = 5.73

pLD50 = 5.73

pLD50 = 4.53

Model interpretation: Chemical fragments don’t act in 
isolation!

Modified from
 Kuz’min et al. 
J Comp Aided Mol Des
2008, 22, 747–759



Model-driven Structure optimization 



Computational metallomics: Elucidation of adverse 
outcome pathways of metal toxicity using knowledge 
graph mining

39Beasley, JMB, et al. Integrated approach to elucidate metal-implant related adverse outcome pathways. Regul Toxicol 
Pharmacol . 2022 Dec;136:105277. doi: 10.1016/j.yrtph.2022.105277.



Metal Leaching from Implants Causes Toxicity

• Mechanical forces and corrosion 
release metal particles

• Adverse local tissue reaction 
(ALTR) -Severe inflammation, 
tissue necrosis, and 
pseudotumor formation at site of 
implant [1]

• Neuropathic pain disorders, 
hypersensitization/allergic 
responses, and cardiomyopathy 
among other reported adverse 
events [1,2]

40

Photo: Anastasia Floyd. Case Study Early Failure of a Modular Hip Implant. Univ. of Calif. Berkeley. 2015.

[1] U.S. Food and Drug Administration Center for Devices and Radiological Health. Biological Responses to Metal Implants. www.fda.gov/media/131150/download (2019).

[2] Eliaz, N. Corrosion of Metallic Biomaterials: A Review. Materials (Basel). 12, (2019).



Adverse Outcome Pathway (AOP) Models can help 
explain Toxicity and identify disease biomarkers



Morton et al., ROBOKOP: An Abstraction Layer and User Interface for Knowledge Graphs to Support Question Answering. 
Bioinformatics. 2019 35(24):5382-5384
Chris Bizon, Steven Cox, James Balhoff, Yaphet Kebede, Patrick Wang, Kenneth Morton, Karamarie Fecho, and Alexander Tropsha
Journal of Chemical Information and Modeling 2019 59 (12), 4968-4973 

• ~9M nodes and ~130M edges drawn from 39 
biomedical data sources and bio/chemical-
ontologies

• Nodes represent biomedical entities; edges 
provide predicates, publications, and 
quantitative data that explain the relationship 
between connected nodes

•Leverages Biolink Model 
(https://biolink.github.io/biolink-model/) for 
semantic harmonization and standardization of 
node and edge types

Funders
U24ES035214

OT3TR002020
OT2TR003430

UL1TR002489

UL1TR002489-03S4

https://biolink.github.io/biolink-model/


Structure-based Knowledge of Metal-protein 
Interactions from MetalPDB

• Known metal-protein 
structures mined from 
MetalPDB*

• 56 cobalt, 1 chromium, 1 
molybdenum, 118 nickel, 
and 1 titanium PDB entries

*Putignano, V., Rosato, A., Banci, L. & Andreini, C. MetalPDB in 2018: A database of metal sites in biological macromolecular structures. Nucleic Acids 
Res. 46, D459–D464 (2018).

Cobalt

Chromium

Nickel Molybdenum

Titanium

40

102
1

1

1
15

ARG1, B2M, BF, 
BFD, BRCA1, 
CA2, CDABP0092, 
CFB, HDCMA22P, 
JMJD3, JMJD5, 
KDM6B, KDM8, 
KIAA0346, RNF53

POLB

0 0

0

0

0
0

0

0
00

0

0 0

0

0

0 0

0

0
0
0

0

0

0 0
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ROBOKOP was used to mine metal-gene interactions and 
generate hypothetical Adverse Outcome Pathways 

[1] U.S. Food and Drug Administration Center for Devices and Radiological Health. Biological Responses to Metal Implants. www.fda.gov/media/131150/download (2019).

[4] Morton, K. et al. ROBOKOP: an abstraction layer and user interface for knowledge graphs to support question answering. Bioinformatics 35, 5382–5384 (2019).

Ask questions 
in ROBOKOP 

[4]

*Taken from [1]

Generate 
Putative 
AOPs

44



Hypothetical AOPs prioritized if they 
contain a secreted protein

Secreted 
Proteins [5]

[5] M, U. et al. Proteomics. Tissue-based map of the human proteome. Science 347, (2015).

• Proteins secreted to extracellular space, as 
annotated by the Human Protein Atlas [5] 
selected from 268 identified genes

• 72 secreted genes prioritized

45



177 metal-interacting proteins identified by metalpdb, 
268 identified by ROBOKOP



Adverse Outcome Pathway (AOP) models can help explain toxicity 
mechanism and identify disease biomarkers

Edwards, S. W., et al. (2016). Adverse Outcome Pathways-Organizing Toxicological Information to Improve Decision Making. 
The Journal of pharmacology and experimental therapeutics, 356(1), 170–181. https://doi.org/10.1124/jpet.115.228239
U.S. National Toxicology Program. Adverse Outcome Pathways. https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-
aop/aop.html 

https://doi.org/10.1124/jpet.115.228239
https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-aop/aop.html
https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-aop/aop.html


Nickel interacts directly with human major histocompatibility complex and 
may contribute to metal allergy and hypersensitivity

(i) Metal-Protein-Disease 
connections and overall 

hypothesis was already known

Fisher, A. A. Allergic dermatitis persumably due to metallic foreign bodies containing nickel or cobalt. Cutis 19, (1977).

Cramers, M. & Lucht, U. Metal Sensitivity in Patients Treated for Tibial Fractures with Plates of Stainless Steel. http://dx.doi.org/10.3109/17453677708988763 48, 245–249 (2009).

Basketter, D. A., Briatico-Vangosa, G., Kaestner, W., Lally, C. & Bontinck, W. J. Nickel, cobalt and chromium in consumer products: a role in allergic contact dermatitis? Contact Dermatitis 28, 15–25 (1993).

Hallab, N. J., Caicedo, M., Finnegan, A. & Jacobs, J. J. Th1 type lymphocyte reactivity to metals in patients with total hip arthroplasty. J. Orthop. Surg. Res. 3, 6 (2008).

Wang, Y. & Dai, S. Structural basis of metal hypersensitivity. Immunol. Res. 55, 83–90 (2013).

Driller, R. et al. Metal-triggered conformational reorientation of a self-peptide bound to a disease-associated HLA-B*27 subtype. J. Biol. Chem. 294, 13269–13279 (2019).

Kilb, B. K. J. et al. Frank Stinchfield Award: Identification of the At-risk Genotype for Development of Pseudotumors Around Metal-on-metal THAs. in Clinical Orthopaedics and Related Research vol. 476 230–241 (Lippincott Williams and Wilkins, 2018).

• Nickel (2+) act as haptens

• Change pVIPR self-recognition 
peptide conformation

• MHC/pVIPR/Ni(2+) complex 
recognized as foreign

• Th1-mediated immune 
response triggers allergic 
reaction



(ii) Hypothesis described in 
literature, but Metal-Protein 

connection missing in ROBOKOP. 
Connection was imputed by our 

methodology

• TNF primes macrophage 
activity by activating NF-kB.

• NF-kB induces expression of 
the NLRP3 and IL-1B.

• Titanium particles then activate 
the NLRP3 inflammasome 
pathway, and NLRP3 activates 
IL-1B secretion.

• Osteoclast cells respond to IL-
1B and reabsorb bone tissue, 
contributing to periprosthetic 
osteolysis.

E, J. et al. Tumor necrosis factor primes and metal particles activate the NLRP3 inflammasome in human primary macrophages. Acta Biomater. 108, 347–357 (2020).

Pierre, C. A. S. et al. Periprosthetic Osteolysis: Characterizing the innate immune response to titanium wear-particles. J. Orthop. Res. 28, 1418 (2010).

FS, S., S, H. & SL, C. Mechanism of NLRP3 inflammasome activation. Ann. N. Y. Acad. Sci. 1319, 82–95 (2014).

Y, H., H, H. & G, N. Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem. Sci. 41, 1012–1021 (2016).

Titanium particles induce secretion of IL-1B, promoting 
periprosthetic osteolysis



(iii) All pair connections 
described in literature 
individually, but overall 

hypothesis was not described • Increased cobalt(2+) activates 
ERK1/2 and PI-3K signaling and  
increases production of ROS.

• These processes induce 
expression of HIF-1A.

• Chronic HIF-1A expression 
under normal oxygenation is 
linked to heart failure.

A, T. et al. Cobalt induces hypoxia-inducible factor-1alpha (HIF-1alpha) in HeLa cells by an iron-independent, but ROS-, PI-3K- and MAPK-dependent mechanism. Free Radic. Res. 40, 847–856 (2006).

L, S. et al. Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure. PLoS One 8, (2013).

N, S. et al. MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J. Biol. Chem. 278, 14013–14019 (2003).

GL, S. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003).

Semenza, G. L. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med. 8, S62–S67 (2002).

Lee, J.-W., Bae, S.-H., Jeong, J.-W., Kim, S.-H. & Kim, K.-W. Hypoxia-inducible factor (HIF-1)α: its protein stability and biological functions. Exp. Mol. Med. 2004 361 36, 1–12 (2004).

Hölscher, M. et al. Unfavourable consequences of chronic cardiac HIF-1α stabilization. Cardiovasc. Res. 94, 77–86 (2012).

Cobalt may contribute to congestive heart failure by chronic upregulation 
of HIF1A expression



• 177 structure-based and 268 knowledge-based metal-interacting 
proteins uncovered

• 2170 unique metal-protein-disease triples mined from AOPs 
generated via ROBOKOP

• 72 secreted proteins prioritized for further review
• Cases studies demonstrated the utility of our workflow for 

accelerating hypothesis generation and literature review.
• Hypothetical AOPs can be used as the motivation for research into 

biomarkers of metal implant-related toxicity.
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Summary



• Compliance with OECD principles of model validation
• Descriptor values can be reproduced?

§ Values provided or their calculation described

• Model definition can be confirmed? 
§ Modeling algorithm described explicitly

• External validation set independent of model?
§ External set has no overlaps with training set compounds
§ Descriptors filtered and selected based on training set only
§ Models tuned on training set only

• Model is available and can be tested independently?

Questions that should be Addressed
 to Support the Acceptability of a QSAR model

52



• Rapid accumulation of large biomolecular datasets :
– Strong need for both chemical and biological data curation

• Novel approaches towards integration of inherent chemical properties 
with additional data streams 
– improve the outcome of structure – in vitro – in vivo extrapolation

• Interpretation of significant chemical and biological descriptors 
emerging from externally validated models 
– inform the selection or design of effective and safe chemicals

• Critical challenge: via integration of short-term assays and 
computational data modeling, achieve accuracy of in vivo toxicity 
acceptable for regulatory decision making
– Minimize animal-based toxicity assessment

• Tool and data sharing
– Commercial and public web portals

Conclusions and Outlook



AI and CompTox: are we reaching the 
“plateau of productivity”*?

Comp Tox

https://www.gartner.com/en/articles/
what-s-new-in-artificial-intelligence-
from-the-2022-gartner-hype-cycle

• Data labeling and annotation
• Deep learning
• Intelligent applications
• Relevance to health and safety 
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