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e What is Pharmacokinetics?

* Branch of pharmacology that deals with
fate and transport of a drug (or other o
substance) within an organism. v

e Accounts for absorption, distribution,
metabolism, and excretion (ADME).

 What the body does to the substance.

* Different from pharmacodynamics |
(what the substance does to the body). 4

(http://www.eupati.eu)



== \What is a Pharmacokinetic Model?

* A quantitative statement of a set of hypotheses regarding
ADME.

e Typically expressed as a system of ODEs” that describe the
amounts of a substance in various “compartments” of an
animal’s body.

d

General ODE Form: < [Amount] = [Rate In] — [Rate Out]

 There are two major classes of PK" models ...

"ODE = ordinary differential equation 'PK = pharmacokinetic



R - Two Classes of PK Models

Classical PK Models

Ky ke
»| CENTRAL
uptake clearance
kp> k)
DEEP

(Campbell et al., 2012)

>

Venous Blood

PBPK" Models

Q Q
Y aq, Q,
A

Pancreas

Q Q

Qp Q,
<

*PBPK = physiologically based pharmacokinetic

poo|g |elauy


https://www.ncbi.nlm.nih.gov/pubmed/23007440

Classical PK Modeling

* Empirical approach
Distribution

/ phase

* Number of compartments is selected
to obtain a good fit to available data.

 Compartments generally do not
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* Both PBPK and classical PK models allow for conversions between
external and internal measures of dose.

External Dose Internal Dose

(e.g., amount ingested or (e.g., concentration in
concentration in inhaled air) blood or tissue)

* Motivated by the expectation that observed effects are more directly
related to target tissue dose than administered (or exposure) dose.
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{2 e Internal Dose Metrics

* Internal dose metrics quantify internal exposure.

* For a model that can estimate internal concentrations (e.g.,
in blood) vs. time, the following dose metrics might be

useful.
e Area-under-the-concentration-curve
(AUC) reflects cumulative exposure

* Average concentration reflects cumulative
exposure over a given time period

e Peak concentration reflects short-term
exposure intensity

Concentration

Time




e Pregnancy and Gestation PK Modeling

* PK models can describe ADME in a pregnant mother
and her gestating embryo/fetus.

* Transplacental transfer mechanisms can be
represented in the models.

* Some pregnancy PK models examine a “snapshot” in
time (e.g., Lumen et al., [2013] considered “near-
term” pregnancy).

* However, it may be important to account for
relatively rapid and substantial changes in
parameters that describe anatomical and
physiological quantities.



https://doi.org/10.1093/toxsci/kft078

D Postnatal PK Modeling

* PK models can describe ADME in a mother and her
infant(s), including lactational transfer.

* It’s important to account for changes in anatomical
and physiological quantities.

* For persistent chemicals, exposures that occur before
the postnatal period can have an impact.

@)
)
ﬁ
Maternal Dose Lactational Transfer

Exposure Time




e “Generic” PK Models for
Mother-to-Offspring Transfer
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re . . Model A
o Motivation

* LPECs™ may accumulate in a woman’s body (in body lipids) over the course of

many years.
* They may be transferred to her offspring during pregnancy and nursing.

Maternal Dose @ iE ii ii Lactational Transfer

— o D <P q@é&a

Exposure Time

* A nursing infant may be exposed at a rate (mg/kg/d) that exceeds the exposure or
dose (mg/kg/d) experienced by the mother.

* Therefore, dose-response analyses based on maternal dose metrics may not be
adequate for assessing risks to offspring.

*LPEC = lipophilic persistent environmental chemical



“ER . PK Model for Mother-to-Offspring ~ MedelA
Transfer of LPECs

Prior to and during pregnancy: During lactation and nursing:
Maternal Body
Dose ==—————3p| (+Fetusor === Elimination Dose =31 Maternal Body p=—=3 Elimination
Fetuses)
. Lactational
Key Assumptions: Transfer

e Elimination rate is proportional to amount of
chemical in the body.

e Ratio of concentrations in mother and in utero Dose =————>»{ InfantBody > Elimination
fetuses is constant.

Key Assumptions:
Some model parameters (e.g., body  Elimination rate is proportional to amount of

masses) are time-dependent. chemical in the body.
* Chemical is transferred through milk lipids.




<
=i Model Needs & Assumptions ModelA
» User supplies exposure scenario details:
Required (defaulteglttlzg Zlvailable)

Animal species (mouse, rat, or human) Duration of pregnancy/gestation

Chemical elimination half-life in the animal Duration of lactation/nursing period

Dose level Body mass vs. time for mother

Dose type (direct or via food®) Lipid fraction for maternal body and milk

Dose regimen (start and end times) Litter size, body mass vs. time, and milk ingestion

rate vs. time for offspring

* Mass is conserved (e.g., at birth).

* Piecewise linear functions of time describe body masses and milk
ingestion rates. These are continuous, except at birth and weaning.

*For “direct” doses, dose levels are rates (mg/kg/d) delivered to mother and/or offspring. For “food” doses, dose levels are concentrations (mg/kg) in food and
food consumption rates are estimated based on body mass. In either case, an absorption fraction parameter can be provided.




SEPA Piecewise Linear Functions: Model A
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Piecewise Linear Functions: Model A
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Whole body concentrations (mg/kg) of PCB 153 in mouse dams and fetuses observed (solid circles) by
Vodicnik and Lech (1980) and estimated (lines) based on MC model simulations of that study. The solid line
represents the median predicted concentrations from the MC simulations, whereas the dashed lines represent
the lower and upper bounds of a 95% credible interval for the predicted concentrations.
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To compute HEDs” for the rat HCB' dosing regimen described by Nakashima et
al. (1997), we used a half-life of 6 y for HCB in humans (To-Figueras et al., 2000).

: . Dose Metric HED
Dose Metric (Offspring) Value (mg/kg) (me/ke/d)
Peak concentration during gestation and nursing 0.186 3.97 x 107
ﬁ\éfsr?ngge concentration during gestation and 0.070 5 91 x 105
Average concentration during gestation 0.018 1.73 x 10~
Average concentration during nursing 0.142 4.13 x 10~

"HED = human equivalent dose "HCB = hexachlorobenzene


https://doi.org/10.1093/jn/127.4.648
https://doi.org/10.1289/ehp.00108595

<EPA Model A
e e HED Example
We can compare HEDs for the rat study (Nakashima et al., 1997)
calculated using our PK model to one that might be calculated using
an alternative dosimetry method based on allometric scaling (U.S.
EPA, 2011b).
* Dose applied to rat dams: 0.1 mg per kg of food
* Converting based on food consumption rate: 0.00870 mg/kg/d HED
* Allometric scaling: (mg/kg/d)
e Rat dam mass (Nakashima et al., 1997): 0.247 kg 397 x 10
* Pregnant woman mass (U.S. EPA, 2011a): 75 kg '
. Scaling factor: (0.247 / 75)4 = 0.240 2.91x107
 HED: 0.00870 % 0.240 =2 x 103 mg/kg/d 1.73 x 105
* This value is considerably larger than the HEDs we computed
4.13 x 10~

using our PK model, which accounts for bioaccumulation,
mother-to-offspring transfer, and dosimetry of LPECs.



https://doi.org/10.1093/jn/127.4.648
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En - Summary (Model A)

* We developed a generic PK model that quantifies transfer of LPECs from
mother to offspring during gestation and nursing.

» The only required chemical-specific parameter is half-life in animal species
of interest.

 We evaluated our PK model using PK data from developmental studies.

e We demonstrated how the PK model can be used to calculate HEDs and

compared results with those generated using an alternative HED calculation
method.

 HEDs calculated using our PK model were about 2 orders of magnitude lower
than those generated using allometric scaling.

e Our PK model can be used to calculate internal dose metrics for offspring and
corresponding HEDs and thus informs assessment of developmental toxicity
risks associated with LPECs.
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e Extension of R Package “httk” (Model B
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e HTTK Maternal/Fetal PBTK Model

Features Included:

* Description of fetal physiology and the evolving fetal circulatory
system in pregnancy PBPK models

* Temporal changes in maternal and fetal physiological parameters
(e.g., body mass, compartment volumes, and blood flow rates)
informed by the most current human experimental data available

* Designed to simulate ADME in mother and fetus from 13 weeks
gestation to term

 Placental/fetal transfer is described using partition coefficients, which
might be sufficient for many chemicals

 Accommodates analysis (IVIVE/forward/reverse dosimetry) for more
than 900 chemicals




Model B

Y- HTTK Maternal/Fetal PBTK Model

Features Not Included:

* Changes in maternal metabolic enzyme expression levels and activity
* Changes in fetal metabolic enzyme expression levels and activity

* Changes in renal clearance capacities in fetus across gestational age
* Changes in plasma protein binding for both mother and fetus

* Placental metabolism contributions

* Placental barrier descriptions (permeability rate constants or active
transporter function to determine extent of fetal exposure might be
important for some chemicals)

* Blood-brain barrier descriptions (permeability rate constants or active
transporter function)
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PBTK Model Evaluation Results

Model B

* Aylward et al. (2014) collated data for ratios  \jaternal-to-Fetal Plasma Concentration Ratio
of maternal and cord blood concentrations

for 88 unique chemicals from over 100 3
studies. .

e HTTK were data available for 26 of the chemicals. &

* Omitting volatile chemicals, 9 remain.

[+]
L

* We compared observed ratios (Aylward et
al., 2014) and model-predicted maternal-to-
fetal plasma concentration ratios at term.

* For each chemical, there is a single
prediction (x-value) but there are potentially
multiple observations (y-values).

* Larger symbol - median observation

In vive Mat:Fet Plasma Ratio

* Vertical line = interquartile range (IQR)
e Smaller symbols - outliers o
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. Model B
L e Maternal-to-Fetal Plasma Ratios -

Histogram of predicted 150
maternal-to-fetal plasma
concentration ratios
across the chemicals for
which the HT-PBTK model
can be parameterized
(omitting volatile and
semi-volatile chemicals).
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e HTTK Model Calibration and Evaluation

e HTTK attempts to trade C —
precision for broad volume of I
. . Distribution
applicability 100- pe

* Goalis to make
reasonable predictions for
many chemicals rather
than accurate predictions
for any specific chemical

* We can statistically
characterize the errorin

it 7 1 100
t h € p re d | Ct 10N Predicted Volume of Distribution

Measured Volume of Distribution
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* Fetal tissue-to-blood partition coefficients were

determined by Curley et al. (1969) for six pesticides
and seven tissues for which we can make predictions
with the HT-PBTK model.

* Partition coefficients for tissues, including placenta, B 102
were measured in vitro by Csanady et al. (2002) for %
bisphenol A and daidzein. 2

o

e Small plot points indicate model-predicted, rather
than measured, partition coefficients from Weijs et
al. (2013) for three of the Curley et al. (1969) .
chemicals.

* The identity line (solid) indicates a perfect (1:1)
prediction while the dotted lines indicate a ten-fold

error. Predicted
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* Fetal tissue-to-blood partition coefficients were
determined by Curley et al. (1969) for six pesticides
and seven tissues for which we can make predictions

with the HT-PBTK model.

* Partition coefficients for tissues, including placenta,
were measured in vitro by Csanady et al. (2002) for
bisphenol A and daidzein.

e Small plot points indicate model-predicted, rather
than measured, partition coefficients from Weijs et
al. (2013) for three of the Curley et al. (1969) 1
chemicals.

* The identity line (solid) indicates a perfect (1:1)
prediction while the dotted lines indicate a ten-fold

error. .
Predicted
Adipose Brain Heart

Observed

¢ Kidney B Liver ® Lung
Muscle Placenta Spleen



https://doi.org/10.1080/00039896.1969.10666901
https://doi.org/10.1007/s00204-002-0339-5
https://doi.org/10.1021/es400386a
https://doi.org/10.1080/00039896.1969.10666901

<EPA

. Model B
Observed AUCs o

Comparison of observed (Dallmann et al., 2018) and predicted time-integrated plasma concentrations
(AUCs) for twelve pharmaceuticals administered to non-pregnant (left) and pregnant (right) women.
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Prioritizing Chemicals
Detected in Maternal Plasma

* Wang et al. (2018) detected xenobiotic
chemicals in the plasma of expectant
mothers — here we prioritize those
chemicals with respect to potential
concentration in the fetal brain

* Ordered from the top are those
chemicals with the highest predicted
fetal brain concentrations relative to
maternal blood

* Estimated error (uncertainty)
propagated using upper 95t percentiles

Chemicals Found in Maternal Plasma by Wanget al. (2018)
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Uncertainty

Predicted F:M Plasma Ratio
Plasma Error (Fig. 4)
/v Fetal Brain Partitioning
Brain Partitioning Error (Pearce et al., 2017)
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. Red Square: Estimate of ratio of concentrations in fetal and maternal plasma at term based on simulation of 1 mg/kg/d exposure to mother from GW13 to GW40 (term).
Corresponds t0 Rfat.;mat COlumn of Table 13.

. Green Circle: Estimate of same after accounting for ‘uncertainty’ in this estimate based on analysis of Aylward et al. (2014) data shown in Figure 4. Uses Equation 5.

. Blue Triangle: Estimate of ratio of concentrations in fetal brain and maternal blood. Uses Equation 3 with ‘median’ prediction of fetal brain partition coefficient and ‘green
circle’ value of f:m plasma ratio.

. Purple Diamond: Estimate of same after accounting for ‘uncertainty’ in fetal brain partition coefficient. Uses Equation 8. Corresponds to right-most column of Table 13.
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e “Model B” Included in httk Version 2.1.0
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i Summary (Model B)
* We developed a generic PBTK model that can be used to simulate ADME in a
human mother and fetus during pregnancy and gestation.

» Model is compatible with pre-existing in vitro data for nearly 1000
chemicals.

* We evaluated our PBTK model using available data, including:
» Paired observations of cord and maternal blood concentrations
» Observations of concentrations in pregnant women

e We demonstrated how the PBTK model can be used to estimate fetal brain
concentrations based on maternal blood concentrations.

 Our PBTK model can be used to estimate concentrations in fetal tissues (e.g.,
brain) based on concentration in maternal blood, along with uncertainty, and
thus could potentially be used for prioritization of chemicals (e.g., chemicals
with developmental toxicity potential).




e Comparing Model Features

Feature Model A Model B
Generic (can be parameterized for many chemicals) ° ®
Focused on LPECs °

Classical PK model °

PBTK model °
Includes time-varying parameters ° °
Covers pregnancy and gestation ° °
Covers lactation °

Parameterized for humans J J

Parameterized for laboratory animals ®
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